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Abstract

Whether local algorithms can compute constant approximations of
NP-hard problems is of both practical and theoretical interest. So far,
no algorithms achieving this goal are known, as either the approximation
ratio or the running time exceed O(1), or the nodes are provided with
non-trivial additional information. In this technical report, we present the
first1 distributed algorithm approximating a minimum dominating set on
a planar graph within a constant factor in constant time. Moreover, the
nodes do not need any additional information.

1 Introduction

Common distributed network protocols require some nodes of the network to
have information about the global state of the network. As networks grow
larger and become more dynamic, using such protocols becomes increasingly
difficult. Indeed, nodes only being aware of their local neighborhood suffices
for many problems. Such distributed algorithms are known as “localized” or
“local” algorithms.

Whereas many algorithms called “localized” are not wait-free and prone to
experience a butterfly effect due to chains of causality, the term “local” is often
used rigorously: In a k-local algorithm nodes are allowed to gather information
of their k-hop neighborhood before they make a decision. Such algorithms
are very useful when tackling problems in dynamic networks. The topology
of a dynamic network may change over time, thus a solution may need to be
modified. In the worst case, rerunning a non-local algorithm may lead to a
solution already rendered useless before the computation finishes. When facing

1The algorithm presented in [14] is wrong and the analysis of the algorithm in [5] is incom-
plete.
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communication or state mistakes thwarting computational progress, correcting
errors locally can lead to self-stabilizing networks.

In the past few years, k-local algorithms have attracted remarkable interest,
stimulated by innovations in ad hoc and sensor networks. However, as discussed
in the related work section, many proposed algorithms have a drawback. They
allow nodes to gather information on an extended neighborhood, increasing
with a function f of the number of nodes n; we call this model f(n)-locality.
In this report we focus on O(1)-local algorithms, where each node knows its
neighbors within a constant radius. Hence we use the original definition of
locality coined in the seminal paper by Naor and Stockmeyer [22], omitting
O(1) in the notation.

Despite the research momentum f(n)-local algorithms have experienced, lit-
tle is known about strictly local algorithms. An exception is the work by Kuhn
et al. [16, 18] proving that many classic graph optimization problems cannot be
solved locally on general graphs. As the graph family to construct the lower
bound is exotic, one might hope that many practically interesting graph classes
still permit local algorithms. However, Linial [20] proved that even in a ring
topology some problems are not solvable locally, hence one cannot hope to e.g.
find a local algorithm for maximal independent sets in unit disk graphs or a
coloring in a planar graph.

Positive results on local algorithms are rare. Naor and Stockmeyer [22]
present non-trivial problems with a local solution, e.g. the weak 2-coloring prob-
lem, a coloring of all nodes with two colors such that each non-isolated node
has at least one neighbor colored differently. However, what all their problems
have in common is the fact that a simple broadcast algorithm can solve them.

So is there any hope that a difficult problem can be computed locally? Or,
more specifically, are there NP-hard problems that permit a constant approxima-
tion by an algorithm depending on knowledge of the local neighborhood only?
Rather surprisingly, this work answers this question affirmatively. We present
a constant-time constant-approximation local algorithm for the minimum dom-
inating set problem on planar graphs (shown to be NP-complete in [11]). To
the best of our knowledge, this is presently the hardest problem solved by a
local algorithm. We hope our result will help in comprehending the limitations
and capabilities of local algorithms, and eventually capture the complexity of
distributed algorithms.

2 Related Work

Local algorithms have been studied for more than three decades [1, 3, 12, 20,
21, 22, 23]. Recently, research on local algorithms has been thriving again,
probably thanks to emerging applications in ad hoc and sensor networks (see
[25] for a recent survey). In particular, the minimum dominating set (MDS)
problem and related problems have caught the attention of the community, as
MDS, connected MDS, or maximal independent sets (MIS) promise to provide
an elegant solution to many theoretical problems in wireless multi-hop networks.
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Judging by the abundance of literature on the MDS problem, it seems to be key
to understanding local algorithms.

A first stab at the MDS problem was an ingenious MIS algorithm [1, 12, 21].
However, in a general graph a MIS is not necessarily a good approximation for
the MDS problem. Afterwards there have been numerous proposals, unfortu-
nately, similarly to [1, 12, 21] always either the running time or the approxima-
tion ratio were trivial. The first distributed MDS algorithm non-trivial in both
locality and approximation is by Jia et al. [13]. They present a O(log n log ∆)-
local algorithm that approximates the MDS problem within a factor O(log ∆) of
the optimal in expectation, where n is the number of nodes and ∆ is the largest
node degree. Later, Kuhn et al. proposed the first O(1)-local algorithm with a
non-trivial approximation ratio [19]. This result has been improved [18] to the
currently best result for general graphs: The MDS problem can be approximated
up to a factor of O(∆1/

√
k log ∆) in O(k) time.

Kuhn et al. [16] showed that in general graphs local algorithms are limited,
as even a polylogarithmic approximation of the MDS problem requires at least
Ω(
√

log n/ log log n) time. As the graph family that is used in the lower bound
argument needs an elaborate construction unlikely to ever appear in practice,
people started studying special graph classes. Of particular interest are geo-
metric graphs, such as unit disk graphs (UDGs), since they represent wireless
multi-hop networks well. In UDGs, if distance information is available, one
can compute a constant approximation of the MDS problem in O(log∗ n) time
[17], while without distance information the best deterministic algorithm needs
O(log ∆ log∗ n) time [15], the best (deterministic) algorithm runs in O(log∗ n)
time [24]. Interestingly all these UDG algorithms make a detour and compute a
MIS, which in UDGs provides a constant approximation of the MDS problem.
With respect to the approximation quality Czygrinow et al. presented the best
currently known algorithm on planar graphs [4]. It yields an asymptotically
optimal approximation ratio of (1 + O

(
log−1 n

)
), but the number of rounds is

in O
(
log log n log∗ n log28.7 n

)
. The authors have improved on this bound in [5]

with an algorithm computing a (1+ ε)-approximation in O(log∗ n) time2 among
other results. In particular, they show that for any ε > 0 there is no deter-
ministic algorithm computing a (5 − ε)-approximation DS in o(log∗ n) rounds
in planar graphs.

Thus all algorithms mentioned so far are either not local in our strict sense,
as their running time is a function of the size of the network, or they do not reach
an O(1)-approximation ratio. For several special graph classes, e.g. constant-
degree graphs or trees, the MDS problem is trivial, as there are simple constant-
approximation local algorithms. In fact, few local algorithms for nontrivial
problems are known. Naor and Stockmeyer [22] showed that such problems
exist, e.g. weak 2-coloring or a modification of the dining philosophers problem.
However, these problems can be solved by simple broadcast algorithms on a
global basis. More sophisticated strategies are necessary to reach a constant

2An algorithm computing a constant MDS approximation in O(log∗ n) like the one pre-
sented in this report is a prerequisite for their algorithm.
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approximation of a MDS on planar graphs.
Another class of algorithms assumes the nodes to have additional informa-

tion. Algorithms for sensor networks, for instance, often allow nodes to know
their position in space. Even with location information the MDS problem in unit
disk graphs remains NP-complete [2] yet a folklore single round algorithm will
give a constant approximation; for a PTAS in constant time see [26]. Instead
of knowledge on their location, nodes could have other helpful extra informa-
tion at their disposal, e.g., the maximum degrees of the network or the total
number of nodes. The power of additional information was studied from a more
general perspective in a series of papers [9, 8, 10]: In these papers, Fraigniaud
et al. examine how many bits are necessary to allow efficient algorithms for
problems such as coloring, MST, wake up and broadcast. Not surprisingly, they
observe that problems become easier the more information is available. Pushing
the envelope, Floréen et al. recently presented local algorithms which construct
constant approximations for activity and sleep scheduling problems [6, 7], al-
lowing each node one additional bit of information. This bit is used to break the
symmetry of the original problem, essentially partitioning it into (easier) sub-
problems. As a matter of fact, from a radical viewpoint, additional information
may push our original question into absurdity: Even a small number of bits of
additional information per node is enough to compute a constant-time constant-
approximation of any NP-hard problem—simply let the additional information
encode the (approximate) solution!

3 Model and Notation

A distributed system is modeled as a simple undirected graph where each node
represents a processor and edges correspond to bidirectional communication
channels between them. Nodes are able to distinguish between their communi-
cation channels, i.e., they can designate the intended receiver of a message and
they are able to identify the sender of a message. We use the classic synchronous
message passing model, where in each communication round every node of the
network graph can send a message to each of its direct neighbors. A local al-
gorithm may only use a constant number of communication rounds before each
node reaches a decision based on the acquired information. An algorithm is
correct if the combined solution of all nodes is a valid solution to the given
problem, regardless of the distribution of the identifiers.

Given a graph G = (V,E), a node w ∈ V is a neighbor of some set A ⊂ V
if {a,w} ∈ E for an a ∈ A. For a set of nodes A ⊆ V we define N+

A to be the
inclusive neighborhood of A, i.e., A and all its neighbors. By NA := N+

A \ A
we denote the neighbors of A not in A. For subgraphs and minors H of G
we define neighbors correspondingly and write N+

A (H) and NA(H). In cases
where A consists of a single node a, we may omit the braces in the notation,
e.g. Na instead of N{a}. The two-hop neighborhood of v is denoted by N (2)

v .
For two sets of nodes A and B of graph H the expression “A covers B in H”
means B ⊆ N+

A (H), where we may omit “in H” when clear from the context. A
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dominating set (DS) of G is a set D ⊆ V covering V . A minimum dominating
set (MDS) is a DS of minimum cardinality.

4 Algorithm and Analysis

In this section we present an algorithm computing a constant approximation
of a minimum dominating set on planar graphs in constant time. Assuming
maximum degree ∆ and identifiers of size O(log n), the algorithm makes use
of messages of size O(∆ log n). As planar graphs exhibit unbounded degree,
the algorithm is thus not suitable for practice. Moreover, the constant in the
approximation ratio is 130, i.e., there is a large gap to the lower bound of 5− ε
(for any constant ε > 0) [5]. Nevertheless, we demonstrate that in planar graphs
in principle it is feasible to obtain a constant MDS approximation in a constant
number of distributed rounds.

4.1 Algorithm

The key idea of the algorithm is to exploit planarity in two ways. On the
one hand, planar graphs have arboricity three, i.e., the number of edges of
any subgraph is linear in its number of nodes. What is more, as planarity is
preserved under taking minors, so does any minor of the graph. On the other
hand, in a planar graph circles are barriers separating parts of the graph from
others; any node enclosed in a circle cannot cover nodes on the outside. This
is a very strong structural property enforcing that dominating sets are either
large or exhibit a simple structure. It will become clear in the analysis how
these properties are utilized by the algorithm.

The algorithm consists of two main steps. In the first step all nodes check
whether their neighborhood can be covered by six or less other nodes. Note
that after learning about their two-hop neighborhood in two rounds, nodes can
decide this locally by means of a polynomial-time algorithm.3 If this is not the
case, they join the (future) dominating set. In the second step, any node that
is not yet covered elects a neighbor of maximal residual degree (i.e., one that
covers the most uncovered nodes) into the set. Algorithm 1 summarizes this
scheme.

4.2 Analysis

As evident from the description, the algorithm can be executed in six rounds
and computes a dominating set due to the second step. Therefore, we need
to bound the number of nodes selected in each step in terms of the size of a
minimum dominating set M of the planar graph G. For the purpose of our
analysis, we fix some MDS M of G and assume that n ≥ 3. By D1 and D2

3Trivially, one can try all combinations of six nodes. Note, however, that planarity permits
more efficient solutions.
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Algorithm 1: MDS Approximation in Planar Graphs
output: DS D of G
D := ∅1

for v ∈ V in parallel do2

if @A ⊆ N (2)
v \ {v} such that Nv ⊆ N+

A and |A| ≤ 6 then3

D := D ∪ {v}4

end5

end6

for v ∈ V in parallel do7

δ̄v := |N+
v \ N+

D | // residual degree8

if v ∈ V \ N+
D then9

∆v := maxw∈N+
v
{δ̄w} // maximum within one hop10

choose any d(v) ∈ {w ∈ N+
v | δ̄w = ∆v}11

D := D ∪ {d(v)}12

end13

end14

we denote the nodes that enter D in the first and second step of the algorithm,
respectively.

We often use the following lemma to bound the number of edges of a sub-
graph or minor.

Lemma 4.1. A minor of a planar graph is planar. A planar graph of n ≥ 3
nodes has at most 3n− 6 edges.

We begin by bounding the number of nodes in D1 \M after the first step.

Lemma 4.2. |D1 \M | < 3|M |.
Proof. We construct the following subgraph H = (VH , EH) of G (see Figure 1).

• Set VH := N+
D1\M ∪M and EH := ∅.

• Add all edges with one endpoint in D1 \M to EH .

• Add a minimal subset of edges from E to EH such that VH = N+
M (H),

i.e., M is a DS in H.

Thus, each node v ∈ VH \ (D1 ∪M) has exactly one neighbor m ∈ M , as we
added a minimal number of edges for M to cover VH . For all such nodes v, we
contract the edge {v,m}, where we identify the resulting node with m. In other
words, the star subgraph of H induced by N+

m(H) \D1 is collapsed into m. By
Lemma 4.1, the resulting minor H̄ = (VH̄ , EH̄) of G satisfies that |EH̄ | < 3|VH̄ |.
Due to the same lemma, the subgraph of H̄ induced by D1 \M has fewer than
3|D1 \M | edges. As the neighborhood of a node from D1 \M ⊂ VH̄ cannot
be covered by fewer than seven nodes, the performed edge contractions did not
reduce the degree of such a node below seven.
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Nd

d ∈ D1 \M

≥ 7 nodes
from M

Figure 1: Part of the subgraph constructed in Lemma 4.2.

Consequently, we have

7|D1 \M | − 3|D1 \M |
<

∑
d∈D1\M

δd(H̄)− |{{d, d′} ∈ EH̄ | d, d′ ∈ D1 \M}|

≤ |EH̄ | < 3|VH̄ |
≤ 3(|D1 \M |+ |M |),

which can be rearranged to yield the claimed bound.

To bound the number of nodes |D2| that is chosen in the second step of the
algorithm, more effort is required. We consider the following subgraph of G.

Definition 4.3. We define H = (VH , EH) to be the subgraph of G obtained by
the following construction.

• Set VH := ∅ and EH := ∅.
• For each node d ∈ D2 for which this is possible, add one node v ∈ V \M

to VH such that d = d(v) in Line 1 of the algorithm.

• Add M \ D1 to VH and a minimal number of edges to EH such that
N+

M\D1
(H) = VH , i.e., M \D1 covers the nodes so far added to H (this

is possible as only nodes from V \ N+
D1

elect nodes into D2).

• For each m ∈ M \ D1, add a minimal number of nodes and edges to
H such that there is a set Cm ⊆ VH \ {m} of minimal size satisfying
Nm(H) ⊆ N+

Cm
(H), i.e., Cm covers m’s neighbors in H. We define that

C := ∪m∈M\D1Cm.

• Remove all nodes v ∈ VH \ (C ∪M) for which d(v) ∈M ∪ C.

• For each m ∈M \D1, remove all edges to Cm.
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m ∈M \D1

Cm with |Cm| ≤ 6

Nm(H) ⊆ VH \ (M ∪ C)

Figure 2: Part of the subgraph H from Definition 4.3.

See Figure 2 for an illustration.

In order to derive our bound on |D2|, we consider a special case first.

Lemma 4.4. Assume that for each node m ∈M \D1

(i) no node m′ ∈M ∩ Cm covers more than seven nodes in Nm(H) and

(ii) no node v ∈ Cm \M covers more than four nodes in Nm(H).

Then it holds that |D2| < 98|M |.
Proof. Denote by A1 ⊆ VH \ (M ∪ C) the nodes in VH that elect others into
D2 and have two neighbors in M , i.e., when we added C to VH , they became
covered by a node in M ∩ C. Analogously, denote by A2 ⊆ VH \ (M ∪ C) the
set of electing nodes for which the neighbor in C is not in M . Observe that
A := A1 ∪ A2 = VH \ (M ∪ C) and A1 ∩ A2 = ∅. Moreover, we claim that
|A| ≥ |D2| − 14|M |. To see this, recall that in the first step of the construction
of H, we choose for each element of |D2| that is not elected by elements of M
only one voting node v, i.e., at least |D2|−|M | nodes in total. In the second last
step of the construction, we remove v if d(v) ∈ {m}∪Cm for some m ∈M \D1.
As m ∈ M \ D1, its neighborhood can be covered by six or less nodes from
V \ {m}. Therefore |Cm| ≤ 6 for all M \D1 and we remove at most 7|M | nodes
in total in the second last step. Finally, in the last step we cut off at most
|C| ≤ 6|M | voting nodes from their dominators in M \D1. The definition of A
explicitly excludes these nodes, hence |A| ≥ |D2| − 14|M |.

We contract all edges from nodes a ∈ A to the respective nodes m ∈M \D1

covering them we added in the third step of the construction of H. Denote the
resulting minor of G by H̄ = (VH̄ , EH̄). For every seven nodes in A1, there
must be a pair of nodes m,m′ ∈ M \ D1 such that m ∈ Cm′ and vice versa,
as by assumption no such pair shares more than seven neighbors. Thus, for
every seven nodes in A1, we have two nodes less in VH̄ than the upper bound
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of |VH̄ | ≤ |M |+ |C| ≤ 7|M |. By Lemma 4.1, H̄ thus has fewer than

3|VH̄ | ≤ 3|M ∪ C| ≤ 3|M |+ 3
(

6|M | − 2|A1|
7

)
= 21|M | − 6|A1|

7

edges.
On the other hand,

|EH̄ | ≥
|A1|

7
+
|A2|

4
,

as by assumption each pair of nodes from M may share at most seven neighbors
in A1 and pairs of nodes m ∈M \D1, v ∈ Cm \M share at most four neighbors.
We conclude that

|A2| < 84|M | − 4|A1|
and therefore

|D2| ≤ |A1|+ |A2|+ 14|M | < 98|M | − 3|A1| ≤ 98|M |.
In order to complete our analysis, we need to cope with the case that a node

m ∈M \D1 and an element of Cm share many neighbors. In a planar graph, this
results in a considerable number of nested circles which separate their interior
from their outside. This necessitates that nodes from the optimal solution M
are enclosed that we may use to compensate for the increased number of nodes
in A in comparison to the special case from Lemma 4.4.

Lemma 4.5. Suppose the subgraph H from Definition 4.3 violates condition (i)
or (ii) from Lemma 4.4. Fix a planar embedding of G and consider either

(i) nodes m ∈M \D1 and v ∈M ∩ Cm with |Nm(H) ∩Nv(H)| ≥ 8 or

(ii) nodes m ∈M \D1 and v ∈ Cm \M with |Nm(H) ∩Nv(H)| ≥ 5.

Then the outmost circle formed by m, v, and two of their common neighbors in
H must enclose some node m′ ∈M (with respect to the embedding).

Proof. Set Ã := Nm(H)∩Nv(H). Consider case (i) first and assume for contra-
diction that there is no node from M enclosed in the outmost circle. W.l.o.g.,
we may assume that |Ã| = 8 (otherwise we simply ignore some nodes from Ã).
There are four nodes from Ã that are enclosed by two nested circles consisting of
v, m, and the four nodes that are the outer nodes from Ã according the embed-
ding (see Figure 3). Recall that by the second last step of the construction of H
nodes a ∈ Ã satisfy that d(a) 6∈ {m, v} ⊆ M . Therefore, these enclosed nodes
elected (distinct) nodes into D2 that are enclosed by the outmost circle. As the
electing nodes a ∈ Ã are connected to m and v, by Line 1 of the Algorithm the
nodes d(a) they elected must have at least residual degree δ̄d(a) ≥ max{δ̄v, δ̄m}.
In other words, they cover at least as many nodes from V \N+

D1
as both m and

v.
Consider the subgraph S of G induced by Ã, v, m and L, the set of nodes

that are enclosed in the outmost circle and that are neither in Ã ⊆ V \N+
D1

nor
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m ∈M \D1

v ∈ Cm ∩M

Ã ⊆ V \M a ∈ Ã

d(a) ∈ D2 \ (M ∪ C)

Figure 3: Example of a subgraph considered in the first case of the proof of
Lemma 4.5. While the choices d(a) of the two leftmost and righmost nodes
a ∈ Ã may have large degrees because of nodes outside the outer circle, the
choices of the four inner nodes must have many neighbors that are not covered
by D1 on or inside the outer circle.

already covered by D1. Let ` denote the cardinality of set L. Thus S = (VS , ES)
contains |VS | = l+ |Ã|+ |{v,m}| = `+10 nodes. Regarding the number of edges
we claim that the cardinality of ES is at least

|ES | ≥ |Nv(S)|+ |Nm(S)|+ 4 max{|Nv(S)|, |Nm(S)|} − 18
> 3(|Nv(S)|+ |Nm(S)| − 6).

To see that this claim holds note that the subgraph S contains at least the edges
to all neighbors of v and m in S and the edges incident to the four nodes from
Ã that are enclosed by two nested circles consisting of v, m and the four outer
nodes from Ã according the embedding. Remember, that the residual degree
of these four nodes from Ã in the second step of the algorithm is at least as
large as the residual degrees of v and m, as they would not have been chosen on
Line 11 otherwise. By adding 4 max{|Nv(S)|, |Nm(S)|} we might count some
edges twice, therefore we subtract 18 edges to account for the facts that (i)
there might be up to

(
4
2

)
= 6 edges between pairs of the four considered nodes

d(a) ∈ D2, (ii) up to 8 edges between these four nodes and {v,m} might exist,
and (iii) a chosen node might cover itself in which case no edge is necessary.

The second construction step of Definition 4.3 ensures that Ã ∩M = ∅ by
only adding nodes from V \M to VH . Hence, the assumption that no other
node from M is enclosed by the outmost circle implies that everything inside is
covered by {v,m}. Therefore, it holds that

|Nv(S)|+ |Nm(S)| ≥ 2|Ã|+ ` = `+ 16.

However, Lemma 4.1 lower bounds |VS | in terms of |ES |, giving that

3(`+ 10) = 3|VS | > |ES | > 3(|Nv(S)|+ |Nm(S)| − 4) ≥ 3(`+ 10),

a contradiction.
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Ã ⊆ V \M

m ∈M \D1

v ∈ Cm \M

d(a) ∈ D2 \ (M ∪ C)

a ∈ Ã

Figure 4: Example of a subgraph considered in the second case of the proof of
Lemma 4.5. Supposing there is no other node m′ ∈ M inside the outer circle,
apart from v all neighbors of the node chosen by the innermost node from Ã
must also be neighbors of m.

Case (ii) is treated similarly, but it is much simpler. This time, the assump-
tion that no node from M is enclosed by the outmost circle implies that all the
nodes inside must be covered by m alone, as M is a DS. Since v and m are
connected via the (at least) five nodes in Ã, for the node d(a) 6∈ {m, v} elected
into D2 by the innermost node a ∈ Ã, it holds that N+

d(a) \ N+
m ⊆ {v} (see

Figure 4). However, there are at least two nodes in Ã ⊆ V \ N+
D1

that are not
connected to d(a), i.e., we get the contradiction that a would have preferred m
over d(a) in Line 1 of the algorithm.

Next, we repeatedly delete nodes from H until eventually the preconditions
of Lemma 4.4 are met. Arguing as in the proof of Lemma 4.5, we can account
for deleted nodes by allocating them to enclosed nodes from M ∪C. Doing this
carefully, we can make sure that no nodes from M ∪ C need to compensate for
more than four deleted nodes.

Corollary 4.6. |D2| < 126|M |.
Proof. Fix an embedding of G and thus of all its subgraphs. We will argue
with respect to this embedding only. We use the notation from the proof of
Lemma 4.4. Starting from H, we iteratively delete nodes from A until we
obtain a subgraph H ′ satisfying the prerequisites of the lemma. Assume that
H ′ := H violates one of the preconditions of Lemma 4.4. No matter which of the
conditions (i) and (ii) from Lemma 4.4 is violated, we choose respective nodes
m ∈ M \D1 and v ∈ Cm satisfying precondition (i) or (ii) of Lemma 4.5 such
that the smallest circle formed by m, v, and a1, a2 ∈ Ã := N+

v (H ′) ∩ Nm(H ′)
enclosing an element m′ ∈ M has minimal area. We delete the two elements
from Ã ⊆ A participating in the circle. Since the area of the circle is minimal,
there is no third element from Ã enclosed in the circle.
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m ∈ M \D1

v ∈ C

Nm(H) ∩Nv(H)

m ∈ M

m′ ∈ M

Figure 5: Example of a sequence of three nested circles as considered in Corol-
lary 4.6. Each pair of two voting nodes involved in a circle is deleted from H ′

after it has been accounted for. Therefore, all neighbors of the two outmost
nodes from Nm(H) ∩ Nv(H) are not adjacent to nodes inside the innermost
circle.

We repeat this process until H ′ satisfies the preconditions of Lemma 4.4.
We claim that we can account for deleted nodes in terms of nodes from M ∪C
in a way such that no element of M ∪ C needs to compensate for more than
four deleted nodes. Whenever we delete a pair of nodes, we count a node from
M ∪ C enclosed by the respective circle that has not yet been counted twice.

We need to show that this is indeed always possible. To see this, observe
that the minimality of the enclosed area of a chosen circle X together with the
planarity of G ensures that any subsequent circle X ′ either encloses this circle or
its enclosed area is disjoint from the one of X. In the latter case, we obviously
must find a different node from M ∪ C enclosed in X ′ than the one we used
when deleting nodes from X. Hence, we need to examine the case when there
are three nested circles X1, X2, and X3 that occur in the construction. If the
nodes m ∈M and v ∈ Cm participating in each circle are not always the same,
one node from the first such pair becomes enclosed by one of the subsequent
circles.

Hence, the remaining difficulty is that we could have three such nested circles
formed by nodes m ∈M , v ∈ Cm, and three pairs of nodes fromNm(H)∩Nv(H)
(see Figure 5). Any node chosen by a node a 6∈ {m, v} lying on the outmost
circle X3 is separated from nodes enclosed by X1 by X1. Therefore, nodes
m′ ∈ M enclosed by X1 can cover only nodes that are either not adjacent to
the nodes from D2 considered in Lemma 4.5 (when applied to H ′ after X1 and
X2 already have been removed) or lie on X1. Since the nodes on X1 are m, v,
and two of their shared neighbors in H, we can thus argue analogously to the
proof of Lemma 4.5 in order to find a node m′′ ∈ M enclosed by X3, but not
enclosed by X1.

Altogether, we remove at most two times two nodes each from A, for each
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element of M ∪ C i.e., in total no more than 4|M ∪ C| ≤ 28|M | nodes. To the
remaining subgraph H ′, we apply Lemma 4.4, yielding

|D2| < (28 + 98)|M | = 126|M |.
Having determined the maximum number of nodes that enter the dominat-

ing set in each step, it remains to assemble the results and finally state the
approximation ratio our algorithm achieves.

Theorem 4.7. |D| < 130|M |.
Proof. Combining Lemma 4.2 and Corollary 4.6, we obtain

|D| ≤ |M |+ |D1 \M |+ |D2| < (1 + 3 + 126)|M | = 130|M |.

5 Conclusions

We presented a constant-approximation MDS algorithm for planar graphs. It is
deterministic and fully local, i.e., each node bases its decisions on information
on a neighborhood of constant size, and no knowledge on any global properties
is necessary. To our best knowledge the algorithm is the first of this kind for
an NP-hard problem, showing that such tasks can be solved by strictly local
algorithms.

As approximating an MDS on planar graphs is not NP-hard, one might
ask what exactly makes this problem “harder” than e.g. the weak 2-coloring
problem. In contrast to an MDS approximation problem, the weak 2-coloring
problem can be solved by a simple global algorithm. After an arbitrary node in
each component chooses a color, each of its neighbors may take the other color.
Iterating this process leads to a valid weak 2-coloring of any graph. Having
a closer look, locally computing a weak 2-coloring is basically a question of
breaking symmetric decisions of nodes based on node identifiers. This can be
seen by looking e.g. at a completely symmetric ring topology. On the contrary,
our algorithm operates only on the structure of a constant neighborhood of the
nodes. Nevertheless, the situation is more intricate for the MDS approximation
problem, as illustrated in Figures 6 and 7. Our algorithm copes with these
challenges by exploiting the sparsity as well as the decomposing properties of
circles that planar graphs exhibit.

Since computing an MDS is a fundamental problem, this result sheds new
light into the tantalizing question of the possibilities and limitations of different
models in distributed computing. It remains a challenging task to find out
which other graph classes permit local O(1)-approximation algorithms for the
MDS problem without additional information available to the nodes. This may
finally lead to a hierarchy of graph classes and approximation ratios achievable
by strictly local algorithms.
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level 1

level 2

Figure 6: This graph illustrates, why a simple broadcast algorithm cannot com-
pute a constant MDS approximation. We suppose nodes are traversed from top
to bottom and from left to right. Each node knows its degree and the decisions
of already visited neighbors.

level 1

level 2

Figure 7: The situation looks identical for all level 1 nodes in the graphs dis-
played here and in Figure 6. Thus they must take identical decisions. Entering
the DS is wrong in the graph in Figure 6. Not entering the DS leads, again
due to indistinguishability, to all level 2 nodes entering the DS in the graph dis-
played. By scaling up node degrees we see that such an algorithm can achieve
an approximation ratio of Ω(

√
n) at best.
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