JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS
J. Multi-Crit. Decis. Anal. (2012)

Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/mcda.1477

Pareto-Set Analysis: Biobjective Clustering in Decision and
Objective Spaces

TAMARA ULRICH"
Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland

ABSTRACT

Multiobjective problems usually contain conflicting objectives. Therefore, there is no single best solution but a set of
solutions that represent different tradeoffs between these objectives. Knowledge of this front can help in understanding
the optimization problem better, as promising designs can be identified, and it can be seen what the achievable
tradeoffs between the objective values are. Although for real-world problems, this interpretation of the front is usually
not straightforward.

This paper proposes a method to help the decision maker by clustering a given set of tradeoff solutions. It does so by
extending the standard approach of clustering the solutions in objective space, such that it finds clusters that are compact
and well separated both in decision space and in objective space. It is not the goal of the method to provide the decision
maker with a single preferred solution. Instead, it helps the decision maker by structuring the tradeoff solutions such that
he or she can learn about the problem. More precisely, a good clustering of the tradeoff solutions both in decision space
and in objective space elicits information from the front about what design types lead to what regions in objective space.
The novelty of the presented approach over existing work is its general nature, as it does not require the identification of
distinct design variables or feature vectors. Instead, the proposed method only requires that a distance measure between a
given pair of solutions can be calculated both in decision space and in objective space.

As good clusters in decision space do not necessarily correspond to good clusters in objective space, we formulate this
clustering problem as a biobjective optimization problem and propose PAN, a multiobjective evolutionary algorithm, to
generate promising partitionings. Tests on artificial datasets are used to identify a suitable representation and a suitable
partitioning goodness measure for PAN. Results from applying PAN to a knapsack problem and a bridge construction
problem show that PAN is able to find multiple tradeoffs between good clustering in decision space and in objective space.
Copyright © 2012 John Wiley & Sons, Ltd.

KEY WORDS: Pareto-set analysis; clustering; evolutionary multiobjective optimization; design principles

1. INTRODUCTION are more than two or three objectives and if there is

a complex decision space representation. Moreover,

When optimizing complex systems, there are often
many nonlinear conflicting objectives that have to be
considered. One way to approach such a problem is
to generate the set of Pareto-optimal solutions — or to
approximate it, if the problem is too complex. The
advantage is that the process of selecting a preferred
solution is postponed, thereby giving the user the
possibility to extract information about the problem
from the Pareto-optimal set. The drawback is that
selecting a single preferred solution can be difficult,
as the Pareto-optimal set may contain a large number
of solutions, which are difficult to compare if there

*Correspondence to: Computer Engineering and Networks
Laboratory, ETH Zurich, 8092 Zurich, Switzerland. E-mail:
tamara.ulrich@tik.ee.ethz.ch

Copyright © 2012 John Wiley & Sons, Ltd.

it is not quite clear how information about the problem
can be gained from the approximated set. In this
paper, we would like to group similar solutions in
order to help the decision maker learn about the
problem and to select a preferred solution.

In real-world problems, engineers who optimize
such problems are not only interested in the objective
values of the found solutions but also in their
structure, that is, how the designs look like. For
example, considering a bridge optimization problem,
the engineer might not only be interested in the cost
of the bridge and the load it can carry but also in the
shape of the bridge (e.g. whether it is a cantilever
bridge, a cable-stayed bridge or a suspension bridge,
how many pillars it has or how many arches it
contains). Therefore, when we try to find groups of
similar solutions, we would like to find groups that

Received 31 August 2011
Accepted 17 June 2012

T. ULRICH

are similar both in objective values as well as in their
structure. With such a clustering, an engineer can
draw certain conclusions about which types of designs
lead to what regions in objective space.

Also, when optimizing real-world problems, the
interpretation of the achieved solutions might be very
time consuming, because the representation of each
solution is very complex. Assume for example in the
bridge construction problem that each bridge can be
built from different materials such as concrete, steel or
other metals. For concrete, the size and the shape of
the steel reinforcing could also be optimized. In
addition, there might be different steel types such as
steel bars or steel wires of arbitrary thickness or even
steel arcs of arbitrary shape. The more detailed the
model to be optimized becomes, the more time it takes
to inspect the solutions returned by the optimization
algorithm. Here, it is useful to have an automatic
method to structure the solutions, such that the engineer
only has to look at a few of them and knows that
the remaining solutions are of a similar structure with
similar objective values.

This paper makes the following contributions:

* It formulates the biobjective optimization problem
of clustering the solutions in objective space and
in decision space simultaneously.

* It selects suitable cluster validity indices that can be
used as the objective functions.

* It extensively tests several evolutionary algorithm
representations and several cluster validity indices for
their use during biobjective clustering optimization.

* It applies its findings to the fronts of a biobjective
knapsack problem and a real-world bridge construc-
tion problem.

After formally stating the optimization problem in
Section 2 and discussing related work in Section 3,
we describe the details of our evolutionary algorithm
in Section 4, including a discussion of different repre-
sentations and the use of validity indices to measure
partitioning goodness. To select a validity index and
a suitable representation, different combinations are
tested in Section 5 on artificial datasets where the
optimal partitionings are known in advance. Finally
in Section 6, the algorithm is compared with the
standard approach of repeatedly applying the well-known
k-medoids clustering algorithm with different number
of clusters in order to validate the multiobjective
approach. The proposed method is then applied to
the Pareto-set approximations of a knapsack problem
and of a bridge optimization problem to qualitatively
evaluate its results.

Copyright © 2012 John Wiley & Sons, Ltd.

2. PROBLEM SETTING

Consider a multiobjective optimization problem
with a decision space X and an objective space
ZER™ = {f(x)|x € X} , where f:X—Z denotes a
mapping from the decision space to the objective
space with m objective functions f={fi,....f,,}. An
element x € X of the decision space is also named a
solution. Although the objective space is a real-
valued space, we make no assumptions about the
structure of the decision space. In particular, we do
not require the decision space to be a Euclidean
space, and we also do not require the decision
space to be spanned by a predefined set of decision
variables that can take a certain set of values.
Instead, we only assume that we are given a distance
measure on solution pairs, that is, dp:X> — R,
where dp(x1,x;) € R denotes the structural distance
between the two solutions x; and x,.

We will also need a distance measure in objective
space. As the objective space is a real-valued metric
space, we choose Euclidean distance, that is, do :

X2 R, with doxi,x) = /S0 (i) — filx))?
denoting the Euclidean distance between x; and x, in
objective space. Note that we here assume that the
objective space is of a reasonable dimensionality.
For high-dimensional real spaces, the Euclidean
distance is not a good distance measure anymore.
See Houle et al. (2010) for more information and a
rank-based solution to this problem.

Consider now that we are given a set of such
solutions X cX. We do not make any assumptions
about this set and about how this set has been
generated; for example, it can be the output of a
multiobjective optimizer, and it can contain both
dominated and non-dominated solutions. This set
may be difficult to interpret, especially if there are
many solutions, many objectives and if the solu-
tions have a complex decision space representation.
We therefore would like to generate a partitioning
of this set; that is, we would like to group the solu-
tions into clusters to ease the interpretation of the
optimization results.

Definition 1
A cluster c € X is a subset of all solutions in the given
set X'.

Definition 2

A partitioning C={cy,...,c;} is a set of k clusters
such that each solution is included in exactly one
cluster, that is, VxeX :(3¢;e C:xec;), and no

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

solutions is included in more than one cluster, that is,
X €cihx;€c=>j=1

But what is a good partitioning? Usually, a good
partitioning is one where the clusters are compact
and well separated. This means that solutions within
a cluster should be close to each other (i.e. the
cluster has a small intracluster distance), and solutions
of different clusters should be far from each other
(i.e. the clusters have a large intercluster distance). In
the literature (Xu and Wunsch, 2009), these two
measures are usually combined into one goodness
measure, the so-called validity index. We therefore
assume that we are given such a validity index V :
(D,d) — R. Here, D is an arbitrary space, and d is a
distance measure defined on D, that is, d : D* — R.
Note that many validity indices cannot cope with
partitionings that contain only one cluster (which in
turn contains all solutions). Also, they sometimes have
problems with clusters that only contain one solution.
We therefore assume that a feasible partitioning must
contain at least two clusters, and each cluster must
contain at least two solutions. This reduces the possible

number of clusters k to the interval k € {2, {@H .

In this paper, we would like to find a partitioning
that is good both in decision space and in objective
space. We therefore have two objectives. The first is
the validity index in objective space, and the second
is the validity index in decision space. Whether these
two indices are conflicting or not depends on the
given solution set X . There may well be solution sets
where a good partitioning in objective space does not
result in a good decision space partitioning and vice
versa, for example, for optimization problems where
radically different designs can lead to similar objec-
tive space values. Depending on the chosen distance
measure, it can also happen that two solutions with
a low distance to each other still do have quite
dissimilar objective values, in particular if the distance
measure does not capture all differences between
the solutions.

As two conflicting objectives generally lead to a
tradeoff front, we here suggest to optimize the two
validity indices as a biobjective problem in order to
find that front. This has the advantage that the
two indices do not have to be combined into one
goodness measure a priori. Furthermore, the tradeoff
between a good partitioning in decision space and
in objective space can be visualized, and the user
can then choose one of the partitionings depending
on which space is more important to him or her.
The optimization problem can therefore be stated
as follows:

Copyright © 2012 John Wiley & Sons, Ltd.

Find a partitioning C" such that V(C"), dp) and V(C",dp) are
optimal. Here, V(KC*),do) is the validity index calculated on
the objective space values of the solutions in C”, and V(C", dp)
is the validity index calculated on the decision space values.
do and dp are the distance measures in objective and decision
spaces, as defined in the first two paragraphs of this section.

3. RELATED WORK

This problem is closely related to traditional clustering,
which aims at finding groups of points in such a way
that the points within a cluster are as similar as possible,
whereas points belonging to different clusters should
be well distinguishable. Note that clustering is an
unsupervised process that groups solutions on the
basis of how near they are to each other. This differs
from classification, which uses supervised learning
to derive rules to assign solutions to groups by using
training data, that is, given assignments that are
known to be correct. Clustering problems have been
known for a long time (see, e.g. the book of Xu and
Wunsch, 2009, for a good overview of the field and
an introduction into standard clustering techniques,
including partitional clustering, which will be used
in this work). Other techniques that will not be consid-
ered in this paper because they either place some
assumptions on the solution space or do not produce
crisp clusters are hierarchical, neural network based,
kernel based, sequential or fuzzy clustering techniques.

The clustering problem we would like to solve in
this paper differs from traditional clustering as the
considered points are characterized by two aspects,
namely the decision space representation of solutions
as well as their objective space values. We would like
to group solutions such that the clusters are close in
objective space but at the same time exhibit strong simi-
larities in decision space. Note that this is not the same
as multiobjective clustering, as it is, for example,
described in Handl and Knowles (2007). Multiobjective
clustering aims at solving common problems in
standard clustering, such as setting the tradeoff between
cluster compactness, cluster separation and cluster
number. It does so by transforming the clustering
problem into a biobjective problem, a process that is
also known as multiobjectivization, where the first goal
is to optimize the cluster compactness and the second
goal is to optimize cluster separation.

Clustering of data, which is characterized by more
than one aspect, has recently gained attention in the
field of bioinformatics, where for instance genes need
to be grouped according to their mRNA expression

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

profiles and their protein interaction partners. A
commonly used approach combines this data into
one matrix and then applies conventional clustering
techniques (Eisen et al., 1998). In our case, the cluster
measures are different for the objective space and the
decision space, so merging the two spaces is not an
option. Other approaches consider both datasets sepa-
rately but are designed to find only a single best
cluster (Calonder et al., 2006; Kutalik et al., 2008).
In this study, however, we would like to find multiple
groups of solutions. Bushel et al. (2007) used a com-
mon distance measure, that is, the sum of Euclidean
distances in both spaces, and then applied the k-means
clustering algorithm to derive the groups. In our
problem however, we are considering datasets where
the best partitioning in decision space might be very
different from the best partitioning in objective space,
and we would like to generate the tradeoff solutions in
between. Pollard and van der Laan (2002) applied
iterative clustering, which means that the data are first
clustered in one space, and the resulting clusters are
then clustered again in the other space. This process
can be repeated, or the order of the spaces can be
reversed. This approach is very similar to the approach
proposed by Aittokoski et al. (2009), who applied a
modified k-means algorithm to cluster the solutions
in objective space. For a refinement, the same
algorithm can be applied to group the solutions of indivi-
dual clusters in decision space. Finally, Narayanan et al.
(2010) proposed a measure to quantify the goodness of
clusters in different spaces. It assumes that each space
can be transformed into a graph, where the nodes are
the genes and the edges are the relations between genes.
Here, different relations can be modelled in different
graphs. The measure then calculates for each cluster a
score on each graph, and the worst score over all graphs
is selected as the representative score for that cluster. The
partitioning goodness measure then is defined as the sum
of these representative scores of all clusters.

Some recent efforts have been undertaken in order to
infer relationships between decision and objective
spaces, which helps to extract design principles that
can be useful to the decision maker. One such method
is called ‘innovization’ (innovation through optimi-
zation) (Deb and Srinivasan, 2006). To be able to apply
innovization, it is assumed that the decision space
is built from real and/or discrete decision variables
that can take certain values. In earlier innovization
approaches (Deb and Srinivasan, 2006), solutions were
examined manually on a specific problem to derive
interesting facts about variables such as common vari-
able settings, variable importance, and relations between
variable settings and objective values. More recent

Copyright © 2012 John Wiley & Sons, Ltd.

approaches (Bandaru and Deb, 2011) automate this
process by first using clustering in objective space and
then fitting some basis functions to model the data in
the cluster.

Other approaches aim at visualizing the Pareto-front
and/or the Pareto-optimal solutions in decision space
and inferring design principles from these visualiza-
tions. One such approach is using self-organizing maps
(Obayashi and Sasaki, 2003), where high-dimensional
decision and objective spaces are mapped to two-
dimensional maps. Another approach is using heat
maps (Pryke et al., 2006), where real-valued variable
and/or objective vectors of a set of solutions are plotted
as coloured heat maps. Both approaches assume that the
decision space is a real-valued space.

Some work has also been carried out to do feature
extraction. Sheng et al. (2008) assumed that each solu-
tion can be described as a set of features, which can,
but do not have to be equal to the decision variables.
They then optimized a partitioning using an evolution-
ary algorithm, where they also evolved a subset of
features that is to be taken into account when calculating
the partitioning goodness. Sugimura et al. (2009) also
assumed that there are design variables and mines for
design rules that specify which variable settings lead
to which fitness levels. Preliminary work of the author
(Ulrich et al., 2008) applies biclustering to the (binary)
decision space to identify characteristic subsets of deci-
sion variables, called modules. These modules are then
used to cluster the solutions. This approach has two
major shortcomings. First, it focuses on the decision
space, and a straightforward integration of objective
space information is only possible if there are no more
than two objectives. Second, the used biclustering
method only works for binary decision spaces. Note that
all of the previously mentioned approaches make some
assumptions on the decision space, that is, that there is a
given set of design variables. Considering the bridge
problem described in the introduction, it might be
difficult to define the space of all possible bridges with
the use of design variables. Our approach aims at such
problems with complex decision spaces, as the only
requirement of our approach is that it is possible to
measure the distance between any two solutions.

There has been a multitude of approaches to do
clustering using evolutionary algorithms (see, e.g.
Hruschka et al., 2009, for a comprehensive overview
of current approaches). These approaches mainly differ
in the used representations, variation operators, fitness
functions (i.e. the used cluster validity index) and
whether the number of clusters is variable or is assumed
to be fixed. Bandyopadhyay and Maulik (2001) also did
a comparison of three cluster validity indices.

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

Also, clustering has been used to prune a given set of
tradeoff solutions, for example, produced by a multi-
objective optimizer in order to help the decision maker.
Typically, this clustering is carried out solely in
objective space. Taboada and Coit (2007) applied the
k-means algorithm for all possible number of clusters.
Morse (1980) used both partitional and hierarchical
clustering. Rosenman and Gero (1985) tackled the
problem of differently scaled objectives.

Finally, there has been some work that aims at main-
taining diversity in decision space during optimization
(e.g. Rudolph et al., 2007; Ulrich et al., 2010). If there
are so-called preimages (i.e. distinct regions) in the deci-
sion space that map to the whole Pareto-optimal front, a
decision maker might be interested in finding all of
those preimages. In such cases, clustering the solutions
not only in objective space but also in decision space
is advantageous.

4. PAN: THE PARETO-FRONT ANALYSER

Clustering problems in general are hard to solve. A
simultaneous clustering in two spaces is even more
challenging, and it is not clear how an algorithm should
be designed to achieve good clusters, especially if sev-
eral cluster validity indices are considered. In this paper,
we therefore propose PAN, an evolutionary algorithm,
to optimize the biobjective problem defined in Section
2. The general framework of our evolutionary algorithm
is shown in Algorithm 1. This is a standard form of an
evolutionary algorithm, where variation and selection is
iteratively applied for a fixed number of iterations. Note
that in PAN, each solution corresponds to a partitioning.
The population P therefore is a set of partitionings, and
the objective functions are the partitioning goodness
measures in decision space and in objective space.

Algorithm 1 General framework of an evolutionary
algorithm. Input parameters: population size n; minimiza-
tion is carried out for g generations.

function EA(n, g)
Initialize population P randomly with n partitionings
for g generations do
P'= VARIATE (P,n)/* generate n offspring */
P=SELECT (Pu P, n)/* select n partitionings */
return P
end function

For the selection procedure, we opted to go for the
standard greedy hypervolume-based selection, which
is shown in Algorithm 2, where HYP (P) is the

Copyright © 2012 John Wiley & Sons, Ltd.

hypervolume of population P. The hypervolume in turn
is calculated on the objective values of the solutions,
which is defined by the selected cluster validity index.

Algorithm 2 Selection procedure. Input parameters:
population P, number of partitionings to select n.

function SELECT (P, n)
while |Pl >n do
I* remove partitioning with smallest contribution */
P=P\{argmin ,;c p (HYP(P) — HYP(P\pi))}
return P
end function

The variation procedure is shown in Algorithm 3. We
here assume that the number of offspring to generate is
equal to the population size. Also, we are using random
sampling without replacement as a mating selection
scheme. Note that there are some constraints on the
partitionings, namely that each partitioning must at least
contain two clusters and that each cluster must at least
contain two solutions. The functions ISVALID and
ISINVALID check whether a given partitioning is valid
or invalid. We here deal with these constraints by using a
repeat strategy; that is, for each parent pair selected
during mating selection, we keep generating offspring
until two feasible offspring have been found. The recom-
bination and mutation of course depends on the selected
representation and will be described in more detail
in Section 4.2.

Algorithm 3 Variation procedure. Input parameters:
population P, (even) number of offspring »; recombi-
nation probability pg.

function VARIATE (P, n, pg)
for 1 to n/2 do
set 01 and o0, to an invalid partitioning
while ISINVALID(0,) or ISINVALID(0,) do
/* randomly select two parents from P */
{p1,p>} =MATINGSELECTION(P)
o'y = py1, 0’5 = pa /% set offspring to parents */
With probability pg: {0, o’» =RECOMBINE(p,, p»)
0’1 =MUTATE(0')
0’5 =MUTATE(0'5)
if ISINVALID(0;) and ISVALID(0,) then
0, =0
if ISINVALID(0,) and ISVALID(0',) then
0,=05
P =Pu{oy,0,}
return P’
end function

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

4.1. Speed up by local heuristic

Preliminary tests (see also Section 5.1) showed that
without any speedup, PAN with an arbitrary represen-
tation and validity index takes a long time to reach
satisfying partitionings. To speed up the search, we
therefore propose to integrate a local heuristic into the
search. One of the most common clustering algorithms
is the k-means algorithm (MacQueen, 1967). The
k-means algorithm is known to converge fast towards
the nearest local optimum, which makes it well suitable
as a local heuristic during optimization.

To integrate the local heuristic, we propose to
locally optimize the offspring partitionings both in
decision space and in objective space and then select
the future parents from the set containing both original
offspring, offspring locally optimized for partitioning
goodness in objective space and offspring locally opti-
mized for partitioning goodness in decision space. The
adapted general framework of PAN that incorporates
the local search is shown in Algorithm 4.

Algorithm 4 PAN algorithm with local search. Input
parameters: population size n; minimization is carried
out for g generations.

function PAN(n, g)
Initialize population P randomly with n solutions
for g generations do
P' =VARIATE(P, n)/* generate n offspring */
/* apply local optimization in both spaces */
P', = LOCALOPT(P, obj)
P',= LOCALOPT(P, dec)
P =SELECT(P u P u P, u P 4n)/* select n solutions */
Return P
end function

Note that the original k-means algorithm makes use
of the cluster centroids, which assumes that the
solutions are given in Euclidean space. As we only
require pairwise distances in decision space, we
therefore use the k-medoids (Kaufman and Rousseeuw,
1990) algorithm instead, which is an adapted version of
k-means that works with cluster medoids instead of
centroids (see also Section 4.3 for more details about
cluster medoids).

4.2. Representation

When designing an evolutionary algorithm, a suitable
representation has to be chosen for the problem at
hand in order to code the different solutions, in this
case partitionings. In the literature, several represen-
tations are used for clustering problems, namely

Copyright © 2012 John Wiley & Sons, Ltd.

the centroid, graph, integer and direct representations
(e.g. Hruschka er al., 2009).

4.2.1. Centroid representation. The centroid repre-
sentation is used by several authors (Das et al., 2009;
Kundu et al., 2009) and codes only the cluster centroids.
Each solution is then assigned to the nearest centroid.
This is similar to the cluster allocation of the well-known
k-means clustering algorithm (MacQueen, 1967). The
centroid representation has the advantage that it consider-
ably reduces the search space, as only a small number of
centroids have to be chosen. The disadvantage is that
first, this representation assumes that the solutions are
given in Euclidean space, and second, it is not at all clear
how one centroid can be decoded into two spaces. We
therefore need a representation that directly represents
the solutions assignment to clusters, without making
any assumptions about the used spaces.

4.2.2. Graph representation. Park and Song (1998)
suggested the graph representation, which is an
adjacency list of length n, where 7 is the number of solu-
tions. The ith value in the list codes one link that says to
which other solution the ith solution is connected
to. The connections of the whole adjacency list return
a graph, where the clusters are the unconnected
subgraphs. Handl and Knowles (2005b) did extensive
tests with this representation and found that it works
satisfactorily. The advantage of this representation
is that standard variation operators can be applied.
Here, we follow Handl and Knowles and use uniform
crossover with switching probability of 0.5 for each
element to do recombination and randomly change
one element in each mutation. Note that Handl and
Knowles proposed to reduce the search space by allow-
ing each solution to be only connected to its L nearest
neighbours. Also, Handl and Knowles state that links to
further away individuals are less favourable than links
to close neighbours and should therefore be mutated with
a higher probability (Handl and Knowles, 2005a). To
keep the comparison between different representations
fair, we do not make use of these techniques.

When using the graph representation, applying the
local heuristic using k-medoids is not straightforward
as the locally optimized partitioning p;® might look
quite different from the original partitioning p;. If so,
it is not quite clear how to incorporate these changes
into the original graph structure while keeping as
many common links as possible. We here use the
following approach. First, starting from the original
partitioning p;, all links between solutions that are
not in the same cluster in the optimized partitioning

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

p?Pt are removed. Then, for each remaining cluster in p;,
an unweighted minimum spanning tree is calculated,
and all links not present in the minimum spanning tree
are removed. Then, all links that have been removed
in the previous two steps are reinserted in a random
manner, and it is checked whether the new partitioning
p; corresponds to the optimized one p;™. If not, another
random assignment is selected. If no assignment is
found that produces the optimized partitioning, the
locally optimized partitioning is discarded.

4.2.3. Integer representation. Another representation
we consider in this paper is called the integer representa-
tion. Itis coded by an integer stringx € { ,2,..., L%J }"
of length n, where n is the number of solutions. Solu-
tions with the same integer value are assigned to the
same cluster. As a mutation operator, we use single-
point mutation, where one randomly chosen position
in the string is assigned a randomly chosen new integer
value already present in the string, that is, Upew € {x}. As
a recombination operator, we use uniform crossover,
where for each position in both parent strings, the two
integers are exchanged with probability 0.5.

4.2.4. Direct representation. We also suggest to use a
direct representation, inspired by the work of Falkenauer
(1998). The direct representation stores a (variable
length) list of clusters, where each cluster in turn is a list
of solutions. We then define three mutation operators for
this representation:

e Move operator: moves a randomly selected solu-
tion to a randomly selected other cluster, with
probability p,,;

* Merge operator: merges two randomly selected
clusters, with probability p,; and

e Split operator: splits a randomly selected cluster
into two random parts, with probability p.

As a recombination operator, we suggest to use an
operator proposed by Falkenauer (1998). It resembles
a two-point crossover in the following way: given two
parents p, and p,, from which we want to create two
offspring o0, and o,. First, we set o, =p, and 0, =p>.
Then, we choose two random cut points in the cluster
list of both parents. The clusters between the two cut
points of p; are added to o0, in the position after the
first cut point in p,. Now there are several original
clusters in o, that contain the same solutions as the
clusters added from p;. Therefore, these duplicate
solutions are removed from their clusters. The second

Copyright © 2012 John Wiley & Sons, Ltd.

offspring is generated in the same way, with the roles
of the parents reversed.

4.3. Validity indices

As stated in Section 2, we would like to find partitionings
that have a good cluster validity index both in objective
space and in decision space. In the literature, a
multitude of different validity indices can be found
(e.g. Bandyopadhyay and Maulik, 2001; Halkidi
et al., 2002; Hruschka et al., 2009; Xu and Wunsch,
2009). They usually combine the two clustering goals,
that is, cluster compactness and cluster separation, into
one goodness measure. Usually, these validity indices
are used to find the correct number of clusters to a given
clustering problem. To do so, clustering optimizers that
take the number of clusters k as a parameter (e.g. the
well-known k-means algorithm) are run for different
values of k, and the resulting partitioning that achieves
the highest cluster validity index is chosen to be the
correct one. Optimizing such a validity index will there-
fore automatically lead to a partitioning with the correct
number of clusters (see also Milligan and Cooper, 1985;
Bandyopadhyay and Maulik, 2001; Halkidi ez al., 2002,
for overviews over indices that are used to identify the
correct number of clusters).

Many of the validity indices found in the literature
assume that the points to be clustered are given in
Euclidean space. Most of the time, they assume that a
cluster centroid can be calculated, where in each dimen-
sion, the centroid value is the mean value of all solutions
in the cluster and in the respective dimension. Examples
for such indices are the Davies—Bouldin index (Davies
and Bouldin, 1979), the CS index (Chou et al., 2004),
some variants of the Dunn index (Bezdek and Pal,
1995), the SD index (Halkidi et al., 2000), the I(k) index
(Bandyopadhyay and Maulik, 2001) and the adapted
silhouette index (Hruschka er al., 2006). As we only
assume that we are given pairwise distances but without
any information about the underlying decision vari-
ables, the cluster centroids cannot be calculated. To
solve that problem, we here propose to use the medoids
instead of the centroids. The medoid of a cluster is the
solution with the smallest average distance to all other
solutions in the cluster (Kaufman and Rousseeuw,
1987). Note that, whereas the calculation of the centroid
is linear in the number of solutions, the calculation
of the medoid is quadratic. See Handl (2005) for a
sampling approach that faces this issue and speeds up
the medoid calculation.

Also, there are some validity indices that do not
only use centroids but also use the notion of a direc-
tion in the solution space, for example, the S_Dbw
index (Halkidi and Vazirgiannis, 2001) or the ReD

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

index (Jornsten et al., 2002). Such indices cannot be
used for our problem.

Finally, we decided to test the following nine
indices. The silhouettes index (Rousseeuw, 1987) S(C)
with an adaptation for minimization S(C)=— (Sorig
(C)—1), where S, (C) is the silhouettes index as
defined in the original paper, the adapted silhouettes
index (Hruschka et al., 2006) AS(C) = — (AS4i(C) — 1),
the Dunn index (Dunn, 1974) D(C)=— Dq,ix(C), the
generalized Dunn index (Bezdek and Pal, 1995) GD
(O)=— GDyie(C), the VRC index (Calinski and
Harabasz, 1974) VRC(C)=— VRC,;s(C), the Davies—
Bouldin index (Davies and Bouldin, 1979) DB(C)=
DB,ix(C), the CS index (Chou et al., 2004) CS(C)=
CSorig(C), the 1 index (Bandyopadhyay and Maulik,
2001) I(C) = — Ii(C) and the SD index (Halkidi e al.,
2000) SD(C) = SDyi(C).

4.4. Practical considerations

The PAN algorithm only makes a few assumptions
about the dataset at hand. The first one is that the best
partitioning in objective space is different from the
best partitioning in decision space. If the two clustering
goals are not conflicting, there is no set of tradeoff
partitionings but a single best partitioning. In this case,
the final PAN population will contain a partitioning that
dominates all others.

The second assumption is that each cluster contains at
least two solutions, because some validity indices cannot
handle clusters with only one solution. We therefore
suggest to do a data cleaning step where outliers, that
is, solutions that have a large distance to all other
solutions, both in objective space and in decision space,
are identified by hand and removed prior to clustering.

5. SELECTION OF VALIDITY INDEX AND
REPRESENTATION

Clustering problems in general are hard to solve, and the
search space is huge, even for a reasonable number of
points to be clustered. If the optimization should work
satisfactorily, the used representation and partitioning
goodness measure have to be selected carefully. This
is because some indices might introduce plateaus or
many local optima. In this section, we try to find a
combination of validity index and representation that
performs satisfactorily on a clustering problem.
Usually, to test which validity index/representation
combination works best on a standard clustering
problem, the different combinations are tested on data-
sets where the optimal partitionings are known. Then,
the combination whose result is closest to the known

Copyright © 2012 John Wiley & Sons, Ltd.

partitioning is chosen as the best one. In this paper,
however, the dataset is given in two spaces, namely
the objective space and the decision space, and a good
partitioning should be good in both spaces. Assuming
that the best partitioning in one space is not equal to
the best partitioning in the second space, we are given
the choice between different tradeoff partitionings.
Unfortunately, it is not clear what qualifies as a good
tradeoff partitioning. Moreover, a tradeoff that is good
with respect to one validity index can be quite bad
with respect to another validity index. However, we
know that all combinations should be able to find
those two partitionings that are best in either the first
or the second space, because these two partitionings
are Pareto optimal, independently of the chosen validity
index (assuming that the validity index is actually best
for the known optimal partitioning).

Therefore, we test our combinations by constructing
different clustering problems where we know the
optimal partitionings in both spaces in advance and
see whether the combinations can find the two extremal
partitionings (those best in one of the two spaces) in the
same run. We here selected three test cases. The first test
case is the simplest where both spaces to be clustered
contain four clearly distinguishable clusters with five
solutions each. The second test case has clusters with
different numbers of solutions to test PAN’s capability
to recognize differently sized clusters. Finally, the third
test case has a larger set of solutions to be clustered in
order to test PAN’s capability to achieve good partition-
ings even for a large number of solutions.

We use the same experimental setup for all three
test cases; that is, we use a population size of 10 for
500 generations, Euclidean distance as a distance mea-
sure (where we normalize all pairwise distances to lie
in the interval [0, 1]). For each setting, we do 30 runs,
with recombination probability pr=0.7 and p,,=0.6,
p.=0.2, p,=0.2 for the mutation operator of the direct
representation.

To compare the results, we consider two aspects.
First, we check whether the partitionings that PAN finds
to be optimal either in decision or objective space
correspond to the expected optimal partitionings.
And second, we measure the minimum number of
function evaluations that is needed to find the optimal
partitionings in both spaces.

5.1. First test case: proof of concept and validation
of local heuristic

The simplest test case is shown in Figure 1, which
shows the optimal partitioning in both spaces. In both
spaces, the best partitioning consists of four clusters of
five solutions each. However, these best partitionings

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

optimal partitioning in first space

first space second space
(0] VV [0} VD
s VY oz W
IS 5
> >
© °
s o s 5
o m o
3 & % g ® 9

optimal partitioning in second space

first space second space
(O] VO Q VV
g ¥ ¥ 3 Y
s [
> >
g o 5 .
o () 9 m
e d de d

first variable first variable

first variable first variable

Figure 1. Points to be clustered for the first test case. The left two plots show the optimal partitioning in the first space, and
the right two plots show the optimal partitioning in the second space. Both pairs of plots show the points in the first/second

space in their first/second plot.

do not correspond to each other, as can be seen in the
figure, where the left two plots show the best partitioning
in the first space (and the corresponding partitioning in
the second space), whereas the right two plots show
the best partitioning in the second space (and the corre-
sponding partitioning in the first space). For reasons
of simplicity, we used the same location of points in
both spaces. Note that if using the Pareto-optimal set
of an optimization problem, the first space might be
the objective space and the second space might be the
decision space. We applied PAN with and without the
local heuristic to get a feeling about the speedup when
adding the local heuristic.

In both cases, we observed that the SD index found
suboptimal partitionings to have a better validity index
value than the known optimal ones. When inspecting
these partitionings, it can be seen that the reason for
this behaviour is the use of the medoid instead of the
centroid. If one cluster contains solutions from all four
optimal clusters, the centroid will lie in the centre of
the solutions, whereas the medoid has to be one of
the actual solutions and therefore is quite far from
the centroid, which in turn causes problems when
calculating the SD index. The SD index therefore
cannot be used for the optimization.

For the remaining indices, the number of function
evaluations after which both optima have been found
without the local heuristic is shown in the left plot of
Figure 2. It can be seen that no combination reaches
both optima within 5000 function evaluations in all
runs, which is an indication for a low convergence
speed. Nevertheless, VRC, S and AS indices with
direct representation as well as the DB index with
integer representation seem to work better than the
remaining combinations.

To tackle the slow convergence speed, we now add
the local heuristic. The number of function evaluations
for reaching the known optima is shown in the right
plot of Figure 2. As can be seen from the figure, all
combinations (with the exception of the GD and DB
indices with integer representation that did not reach
both optima in 5000 function evaluations in one out
of all 30 runs) reach both optima within 800 function
evaluations. Moreover, it can be seen that the direct
and integer representations find the optima faster than
the graph representation.

5.2. Second test case: irregular clusters
In the last section, the known optimal clusters were all
of the same size, and both spaces had the same

900
5000fm — —q----=-=-=+—-=—————=-- -
. + + t 800
+
+
4000 . + * 7001 * A
i 600 .
+ + .
3000 +3 N . 500 . N ‘ . .
! | ! + 400 I +
1 1 + + 1 + + | +
2000, | + I 1 300 + T 4 ot T
| ol + + ! + ! + ! + - 1‘* vE
1000 1 P rE ‘ 1 200 f oo +
| D mheabaihal,ielig
. . J EDLdUictasUstlsgusilaily
- s e . . s D . .
[y] Lm0, D D s @ L QOO0 D, D O
oG5O 000 g0 [0 75D . [ShR=) 0520 TL O[O0 GF D o
8580385502 CS5ELR82083 58 8580885500 CSS5ELR8288 4T
Lo255E2C8L0 050 TOETOES TS Lol 5E2C8ETOEHLOQTOETOED TS
SoSnnS PS000RIfNODNNNS 5L SoEHpnT PEN0QRErOO0NNNE SE
NOOIIIOOOCCG>>>000000-22 NOONIIIOOOSCCOG>>>000000-22

Figure 2. Number of function evaluations (smaller is better) after which both optima have been foun

o

for different validity

index/representation pairs, without local heuristic (left plot) and with local heuristic (right plot).

Copyright © 2012 John Wiley & Sons, Ltd.

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

optimal partitioning in first space

optimal partitioning in first space

first space second space first space second space
° Lo o ° Q - oB ° o ° A 80028
o AA o F re] e} v o
s} ogo® = = v s| 6 A 4 B0
s EaS ° S nouann
° o |0 ® m ° °
c c c c
3 8 8 ﬁ S| sansaea
3 & 3 3

) ® m o o SO W)

first variable first variable

first variable first variable

Figure 3. Points to be clustered for the second (left two plots) and third (right two plots) test cases. Both pairs of plots show
the optimal partitioning in the first space (with the corresponding partitioning in the second space in the second plot of the

respective plot pair).

optimal number of clusters (i.e. four). The goal of this
section is to see how (i) PAN performs if the best
clusters are of different sizes and (ii) whether PAN
struggles with cases where the optimal number of
clusters is quite different in the two spaces. The corre-
sponding problem is shown in Figure 3. Note that, in
the first space, there are three clusters with 2, 5 and
13 solutions each, whereas in the second space, there
is a more regular structure with eight clusters of two
solutions each and one cluster with four solutions.

When looking at the results, it has been found that
the VRC index, the I index as well as the SD index all
find suboptimal partitionings that have a better value
than the known optimal ones and therefore cannot be
used for the optimization. For the remaining validity
indices, the number of function evaluations after
which both optima have been found is shown in the
left plot of Figure 4. It can be seen that the direct
representation is faster for the S, D and AS indices,
and not worse in the other indices than the graph and
integer representations.

5.3. Third test case: larger dataset
Considering the results from the previous two test
cases, it was found that the direct representation works
better than the other two representations. Also, the
VRC, I and SD indices cannot be used, because their
optimal partitionings are known to be suboptimal.
The remaining indices seem to perform satisfactorily,
so we will test these indices with direct representation
on a larger dataset. The dataset under consideration is
shown in Figure 3. In the first space, there are four
distinct clusters with 5, 15, 30 and 50 solutions each.
In the second space, there are 25 evenly spaced clusters
with four solutions each.

The results are shown in the right plot of Figure 4.
It can be seen that PAN both with the D and GD
indices do not find both optima within 5000 function
evaluations. Also, the S and CS indices perform
slightly better than the AS and DB indices. Finally,

Copyright © 2012 John Wiley & Sons, Ltd.

it has been found that the S index takes much longer
to compute than the remaining indices, as it needs to
calculate the pairwise distances between all solutions.

5.4. Test case summary

In this section, we considered several artificial datasets
in order to find a good configuration for PAN. First, it
could be observed that the speedup proposed in Section
1 decreases the required number of function evaluations
to reach the known optimal partitionings significantly.
Second, it was found that the SD, VRC and I indices
sometimes find suboptimal partitionings that have a
better partitioning goodness value than the known
optimal partitionings. Also, the D and GD indices do
not reach the optimal partitioning in a reasonable
number of function evaluations for larger datasets.
And finally, the direct representation has a better
performance than the graph and integer representations,
especially on larger datasets. In conclusion, it was found
that a good combination for PAN is to use direct
representation with the S, AS, DB or CS index.

6. RESULTS

This section first compares the proposed algorithm
with the standard approach of iteratively applying
the k-medoids algorithm. Then, the method is applied
first to a knapsack problem and then to a real-world
bridge construction problem, and its results are
qualitatively inspected.

6.1. Comparison with k-medoids

The goal of this section is to validate the multiobjective
approach. To this end, we compare the achieved hyper-
volume with the hypervolume obtained by the standard
method of applying k-medoids iteratively. In more
detail, this is performed in the following way. We apply
k-medoids several times for all possible cluster numbers.
Each time, we cluster the solutions twice, once in

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

5000 - - - - - - + o = - 5000 e - *
4500 N 4500 - +
4000 * 4000 1
3500 3s00f * : -
3000 |, 3000 : 1
2500 * . 2500 °* +
2000 1 1 2000F T -
1 1
1500 |+ T P 1500 |
1000 [+ * ! + t 1000 + |
+ T i +g
500 B 500 T L
Oé + g + + é‘é% ,é U 0 - L
L mc ® 0B ® - - = =
5585855038888 588¢8¢% s 8§ s 8 § %
03 =Sso0Zass5cessexsSE 3 = @ = = =
:Eo—nm.E.L—EEUU’-—UU’_Uo_ = 5 L S S S
TOEpnnoOPEao0mmmw ®® °© %) ° aQ @ @
NDHHII<L<000006000000 » <) 5} o o

=3

Figure 4. Number of function evaluations (smaller is
validity index pairs, with local heuristic.

decision space and once in objective space, and
check whether the optimized partitionings satisfy the
constraints (i.e. they contain at least two clusters,
where each cluster must at least contain two solu-
tions). For all partitionings that satisfy the constraints,
we calculate the cluster goodness values in decision
space and in objective space. Finally, to compare the
resulting population with PAN, we reduce the number
of achieved solutions to the population size used with
PAN, using PAN’s selection procedure.

We compared k-medoids with PAN on the third test
case, where PAN uses direct representation and the
same indices tested in Section 3. PAN’s population size
again is 10, and it is run for 5000 function evaluations.
The iterative k-medoids algorithm, on the other hand,
is applied for all cluster numbers in the interval
[2,50], with [5000/49] =103 restarts for each cluster
number. This way, both PAN and the iterative
k-medoids algorithm use the same number of calls to
the actual k-medoid algorithm.

The corresponding hypervolume values for the
different validity indices are shown in Table I. Accord-
ing to a Kruskal-Wallis test performed on the data as

Table I. Mean and standard variation of achieved hypervo-
lume values of PAN and the iterated k-medoids algorithm
for six indices

Index PAN k-medoids
S 0.68 +0.27 0.36 +£0.19
AS 0.80+0.23 0.22+0.13
D 0.20+0.32 0.10£0.02
GD 0.52+0.29 0.124+0.04
DB 0.63+0.25 0.29+0.11
CS 0.75+0.18 0.34+0.17

For each index, all achieved hypervolume values were normalized
such that the minimum/maximum hypervolume have the values 0/1.

Copyright © 2012 John Wiley & Sons, Ltd.

etter) after which both optima have been found for all representation/

described by Conover (1999), with the Conover—Inman
procedure, Fisher’s least significant difference method
performed on ranks and a significance level of 1%,
PAN is always significantly better than the k-medoids
algorithm, except for the D index, which has many
outliers. This indicates that some partitionings found
by PAN cannot be achieved by using k-medoids.
Instead, slight variations of partitionings produced
by k-medoids might have a high gain in one space
but at the same time not much loss in the other space.

6.2. Application to knapsack problem

First, we applied PAN to a simple biobjective knapsack
problem. Here, we consider a problem with 150 items
where each item i has two randomly chosen profits p}
and p? and weights w! and w?, where p!, p?, w! and
w? are chosen uniformly and at random in the interval
[10,100]. The problem can therefore be viewed as a
selection problem, where a subset of the 150 items has
to be selected, which will be evaluated in two separate
knapsacks, where each item has a different profit and
weight in each knapsack. Each solution x= {x,x,, .. .,
X150} € {0, 1} is a binary string of length 150, saying
for each item whether it is selected or not. The biobjec-
tive knapsack problem is a constrained problem, where
for each feasible solution x, S 0x-w!<0.2-5"w!
and Zg?xi'w%SO.Z'Z}iw? must hold; that is, the total
weight of all selected items in each knapsack
must not exceed 20% of the total weight of all items
of that knapsack. The objectives then are the sum of
profits of each knapsack, that is, the first objective is

.. 150 . .
to maximize .~ x;;p}, and the second objective is to

L. 150 .
maximize Y., x;-p?. These objectives can be trans-

formed easily into minimization problems using the
following formula:

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

150 150 .
i) =3 p) = i,
f) = 320pF = 2w}

We used the integer programming problem solver
CPLEX (IBM, USA) to generate the exact Pareto-
optimal front for one instance of this knapsack
problem with 150 items. The resulting front con-
tains 138 Pareto-optimal solutions, which we will
now cluster using PAN. We applied PAN using the
AS, CS and DB indices, using direct representation, a
population size of 20 and running PAN for 100000
function evaluations. We found that the AS index has
a tendency to produce many small clusters, whereas
the CS produces two small clusters and one large
cluster. The DB index, instead, produces a few clusters
of reasonable size. We will only show the results of the
DB index in the following. When looking more closely
at the found partitionings shown in Figure 5, it was
found that they can be classified in two templates, one
that contains three clusters and one that contains two
clusters. All partitionings are very similar to one of these
two partitioning templates. We will look at a partition-
ing with three clusters in the following.

To visualize one solution in decision space, the
profits of the chosen and discarded items can be
plotted. Note that there are 17 items that are selected
in all Pareto-optimal solutions and 75 items that are
never selected in any of the Pareto-optimal solutions.
The profits of these items will not be plotted, although
an engineer might certainly look at them to learn more
about the problem at hand. To interpret differences

1.3
3 Clusters

1.2 x

1.1 85

1 x

Cluster goodness in decision space

2 Clusters
0.9
0.8
0.7
0.47 0.48 049 0.5 0.51 052 053 0.54

Cluster goodness in objective space

Figure 5. Partitionings resulting from one PAN run on the
knapsack problem using the Davies—Bouldin index. All
partitionings either had two or three clusters (as indicated).
The chosen partitioning, which will be inspected in more
detail, is indicated with an arrow.

Copyright © 2012 John Wiley & Sons, Ltd.

and similarities of clusters, only the 58 items that are
selected in some solutions but not in others are
plotted. To plot a whole cluster, the cluster medoid
and the solution furthest from the medoid are calcu-
lated, and the items that are selected/not selected in
those two representative solutions are plotted. Also,
it is indicated which items are selected in all/no solu-
tions of that cluster.

The results are shown in Figure 6. As can be seen,
there are two large clusters and one small cluster, where
the two large clusters cover the two extremal regions of
the Pareto front and the small cluster covers the middle
region. When looking at the decision space, the connec-
tion between selected items and location of the solution
on the front can be seen. Cluster 1 contains the solutions
with the highest profit in the first knapsack and at the
same time with the lowest profit in the second knapsack
(remember that the profits in the left plot of Figure 6 are
transformed to yield a minimization problem). Several
items are selected/not selected in all solutions of this
first cluster, and the selected solutions all have a good
profit in the first knapsack. In the third cluster, the
opposite holds, namely the items selected in all solu-
tions mainly have a good profit in the second knapsack,
leading to solutions with a good overall profit in the
second knapsack. Finally, the middle cluster contains
solutions that selected items from the whole range of
profits in both knapsacks. As for the difference between
cluster medoids and solutions furthest from the medoid,
it can be noted that the Hamming distance between the
medoid and furthest solution are 12, 8 and 12 items
for the first, second and third clusters, respectively.
For the whole dataset, the Hamming distance between
solutions varies between 2 and 43 items (remember that
from the 150 items, only 58 are not selected/deselected
in all solutions), with a mean distance of 15.22 + 7.78.

6.3. Application to bridge construction problem

We also applied our algorithm to a real-world problem.
As a problem, we selected the bridge construction
problem that is inspired by Bader (2010), where the goal
is to build a truss bridge that can carry a fixed load. An
example bridge can be seen in Figure 7. Each bridge
basically is a set of nodes, with connections between
certain node pairs. All bridges have to be built in the
following framework. First, there are two fixed nodes,
shown as black circles in the figure, to which the bridge
is connected. Note that in accordance with standard
truss analysis, the fixed node on the left side of the
bridge is fixed both in horizontal and vertical directions,
whereas the fixed node on the right side of the bridge is
fixed only in the vertical direction. Each bridge has a set
of six horizontal connections, called the decks, over

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

Medoid Furthest

83 Hho®] %
=) Cluster 1 g %gﬁe % E! %gm@ thg%% 1
& 3 fo° B@ 8 po | B8 8° po
! ° L "o e¥ad,
‘g- 0.8 :%
= 07 BOp %% B Qg B Up
T 06 “g N ;‘:3&%@%@)@ 3“3:'@‘2@5%“
o e] s % B iy
o xx 7] =® 8 8 8 naO &® 8 °} 8 o;o
o 05 Cluster 2 3 o® e o® e
<)&S,“ o o 5%%- ® o ‘%% ®
-g) Cluster 3 a ® " ®
g o | Bom %3°'9§c% &g,soq,%’o's%m
bo! S‘L.’. :g B o Cg 8 o o
S o1l g (o8 a8 8 po o0 g8 8 po
£ ° vy 5| "o sBa®s | ° o sBaPs
2 o0 . Sovrr g

0 0.2 0.4 0.6 0.8 1

Profit of first knapsack (normalized)

0/0: selected/ not selected in solution
selected / not selected in all solutions of this cluster

items profit in first/second knapsack

B/®:
x/y-axes:

Figure 6. Left: Chosen partitioning with its three clusters (crosses, circles and squares) in objective space. Right: For each
cluster (rows), the medoid and the solution furthest from the medoid are plotted. Each plot shows the knapsack items
selected/not selected in that specific solutions, plus the items selected/not selected in all solutions of that cluster.

LT

Figure 7. Example bridge. One of the two fixed nodes, the
five applied loads and two of the six decks are indicated
using dotted arrows.

7

which the traffic goes. The traffic is modelled as a fixed
load that is applied to the five non-fixed nodes between
these decks, shown as arrows in the figure. In this paper,
we assume that a good bridge will be symmetric.
Therefore, we reduce the search space to symmetric
bridges only, that is, bridges whose left half is identical
to the mirrored right half of the bridge. We do so by
starting with randomized symmetric bridges and then
ensuring that each change we apply to the bridge is also
mirrored to the other side.

The optimization algorithm needs to be able to
modify existing bridges in order to create new bridges
from old ones. So how do we represent and modify
existing bridges? We here use a so-called direct repre-
sentation, that is, the bridges are directly stored as a set
of nodes, and a list of pairs of nodes between which
there is a connection. To create new bridges from
existing ones, each bridge can be modified through
mutation, or two bridges can be recombined. To do
mutation, either the nodes or the connections of the

Copyright © 2012 John Wiley & Sons, Ltd.

bridge can be modified. If a node is modified, three
elementary operations can be made: a node can be
added, removed or moved. If a node is removed, the
node is deleted from the node list, and all connections
to or from that node are also deleted. If a node is
added, an existing connection (not the decks though)
is randomly selected and split by adding a node
somewhere in between the end nodes of the connection,
removing the old connection and then reconnecting both
end nodes to the newly inserted node by inserting two
new connections. To move a node, a random node is
selected and moved both in horizontal and vertical direc-
tions by adding a random number distributed according
to a two-dimensional Gaussian distribution. Modifying
connections is straightforward. Either a random existing
connection (except the decks) is selected and removed
or a connection is added between two nodes that have
not yet been connected.

To recombine two parent bridges, we use an adap-
tation of one-point crossover, which is illustrated in
Figure 8. Note that because bridges are symmetric,
the one-point crossover is actually a two-point crossover
with mirrored cut points. First, a cut position is chosen
randomly, shown as a vertical line. A second cut is
calculated by mirroring the first cut. Both parent
bridges are cut at those two positions, and the parts
between the cuts are swapped in order to generate
two offspring. Hence, the first offspring bridge for
example consists of the outer part of the first parent
bridge and the inner part of the second parent bridge.
Now, there might have been certain connections in
both parent bridges that have been destroyed by the
cutting. For each connection that was cut, one end

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

Figure 8. Example for the recombination of two parent
bridges (upper row). Cuts are shown as vertical lines. Connec-
tions that will be destroyed by the cut are shown as dashed
lines in the parents. For both offspring (bottom row), four
connections have been cut and need to be reinserted. The
corresponding inserted connections are shown as dashed lines
in the children. Also, the original nodes (dashed circles) are
shown, as well as the offspring nodes to which they are closest
(indicated by arrows).

node is retained in the offspring, whereas the other
end node is not there anymore. To repair such a
connection, all available nodes in the offspring are
considered, and the one node that is closest to the
removed end node (the one that is not available anymore
in the offspring) will be used as the new end node of
the connection.

The optimization algorithm also needs to be able to
create random bridges to generate the initial population.
As randomly generating nodes and connecting them in a
random manner is likely to lead to instable bridges, we
here propose the following approach. We always start
with a (stable) Warren truss, and then we randomly
move the nodes of the bridge’s top horizontal connec-
tions in order to introduce some variation. A warren
truss (left) and a random bridge generated from it
(right) are shown in the upper row of Figure 8. If a
random bridge is unstable, new bridges are generated
repeatedly until a stable one is found.

Bridges are evaluated according to two criteria: the
weight and the length of the longest connection. We
here assume that nodes are weight free, and the total
weight is solely determined by the weights of the
connections. We chose the bridge weight as the first
objective because under a few assumptions, the weight
relates linearly to the cost of the bridge through the
material cost. These assumptions are that there are no
additional cost for nodes and no fixed cost for each
connection. The weight of the bridge is calculated as
follows. First, it is checked whether the bridge is stable.
To do so, we use an approach presented by Rahami
et al. (2008)." If the bridge is not stable, it is discarded.
If it is stable, the force on each connection is calculated.
Then, the minimum diameter of each connection is
calculated. It is chosen such that the connection can

Copyright © 2012 John Wiley & Sons, Ltd.

withstand the force applied to it, a decision that only
depends on the material’s yield strength. Now, the
weight of the connection can be calculated using this
diameter, the length of the connection and the density
of the chosen material. The second objective is the
length of the longest connections. We chose this objec-
tive because in a real-world scenario, long connections
might be more difficult to transport than short connec-
tions, and they may be difficult to produce.

As mentioned in Section 2, a distance measure in
decision space is needed, such that similar-looking
bridges have a low distance and dissimilar-looking
bridges have a large distance. But how can the distance
between two bridges be measured? We here decided to
go for a visual measure, on the basis of the shape of each
bridge. We define the shape of a bridge as the area
enclosed by its outermost connections; see the left plot
in Figure 9 for an example. The area difference between
the shapes of two bridges then is the distance between
the two bridges.

To generate a set of optimized bridges, we used the
following specifications. The bridges must support
six decks, where each deck has a length of 10m.
Therefore, the bridge has to cover a distance of
60 m. For the load, we assume that the bridge must
be able to carry two 40-t trucks; a load of 80 t therefore
is applied to each node between the decks. The bridge
has to use steel as a material, with a yield strength
of 400 MPa, an elasticity (Young’s modulus) of
300 GPa and a density of 7.8 g/cm’. For the variation
process in the evolutionary algorithm, we use a recom-
bination probability of 0.7 and a mutation probability of
1.0, and during mutation, we randomly select with equal
probability one of the elementary mutations, that is, add
a connection, remove a connection, add a node, remove
a node or move a node. When adding a node, as
explained before, an existing connection is removed
and replaced by a new node that is connected to the
end nodes of the removed connection. The location of
the inserted node is chosen randomly in the rectangle
area spanned by the end nodes of the removed connec-
tion. When moving a node, a Gaussian is added in each
dimension with mean zero and standard deviation three.
Whenever infeasible bridges are generated during
mutation, we use a repeat strategy that repeatedly tries
to do the selected elementary mutation on the parent
until either a maximal number of tries, in our case
100, is reached (in which case the parent is returned)

'Rahami’s Matlab code, which we used in this paper,
is available at http://www.mathworks.com/matlabcentral/
fileexchange/14313-truss-analysis

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

http://www.mathworks.com/matlabcentral/fileexchange/14313-truss-analysis
http://www.mathworks.com/matlabcentral/fileexchange/14313-truss-analysis

PARETO-SET ANALYSIS THROUGH CLUSTERING

V%

U

Cluster goodness in decision space
o
©
x

06 07 08 09 1 1.1 12
Cluster goodness in objective space

Figure 9. Left: Distance calculation between two bridges (top row). Bridge areas are shown in grey. The distance is visualized in
the bottom row, as the lighter grey area. Right: Partitionings found by PAN on the bridge dataset (measures have to be minimized).

or a feasible bridge is found. Furthermore, we use a
repair strategy prior to the distance calculation, which
iteratively removes all connections on which there is
no force and all nodes that are the end nodes of less than
two connections.

Using these specifications, we generated an opti-
mized set using the DIOP algorithm (Ulrich et al.,
2010) for 100 000 function evaluations and with a popu-
lation size of 100. We chose DIOP because using a
standard MOEA leads to very similar-looking bridges
that are not interesting to cluster. DIOP on the other
hand optimizes the bridges for structural diversity while
having constraints on the bridge’s objective values.
After deleting duplicates, that is, bridges with decision
or objective space® distance zero, 98 solutions remain
for the partitioning. Note that these bridges are optimized
for diversity; that is, there should be no natural clusters of
bridges. Therefore, the clustering task actually is very
hard, and no trivial partitioning can be expected. The
different indices handle the situation in their own
way. The S index was not tested as it takes consider-
ably longer to compute than the other three indices.
Also, the AS index, which has been proposed to solve
the speed problem of the S index, can be used instead.
The AS index itself handles the problem of a non-trivial
dataset by generating a large number of small clusters.
The CS index, on the other hand, tends to find a few
very good small clusters and one large cluster that
contains the remaining bridges. The DB index is even
more extreme and generates the minimum number of
clusters, that is, two, where one cluster is very large
and the other very small. We will here show only the
results of the CS index.

“Duplicates in objective space are also deleted as some cluster
validity indices cannot handle duplicates in either space.

Copyright © 2012 John Wiley & Sons, Ltd.

We clustered all the bridges in the given set with
the use of direct representation and the CS index, with
a population size of 20 and for 80 000 function evalua-
tions. The resulting partitionings are shown in the
right plot of Figure 9. In the following text, one of
the partitionings, indicated with an arrow in the figure,
will be inspected more closely. The chosen partitioning
is shown in Figure 10 and consists of a total of eight
clusters, of which seven are small clusters with either
two or three bridges and one large cluster containing
all the remaining bridges. When inspecting the small
clusters it can be seen that they indeed contain very
similar-looking bridges (one example is given in the
upper right corner of the figure). The large cluster,
on the other hand, contains many different-looking
bridges, although without the most distant-looking
bridges. Apparently, these bridges could not be put
into smaller clusters without impeding the CS measure.
When inspecting the covered objective space area of
the smaller clusters, it can be seen that the area they
cover is quite different. One extreme is the cluster with
a length of the longest connection of 10-12m and a
weight between 800 and 1100kg. The other extreme
is represented by the three clusters that all map to a
point in objective space that has a length of the longest
connection of approximately 21 and a weight of
approximately 580kg. Overall, a visualization of the
whole front as shown in Figure 10 is a much more
intuitive way of extracting information from the front
than just plotting the objectives or by cluttering the
picture with plotting all 98 bridges.

7. CONCLUSIONS
In this paper, we cluster a set of solutions, such that
clusters that are compact and well separated in both

decision and objective spaces are generated. To

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

35

30 -

25

20

length of longest connection

500 600 700 800 900 1000

weight (cost)

1100

Figure 10. Partitioning achieved by PAN. The partitioning consists of seven small clusters of two or three bridges each and
one large cluster of 83 bridges. The objective space values of the bridges are shown on the left, where the small clusters are
indicated by a dark grey box. Each small cluster is represented by a random bridge out of that cluster. For one of the clusters,
both bridges are shown (dashed box). The large cluster is indicated by a box with a black edge. Six random bridges out of

that cluster are shown on the right lower part.

this end, we formally defined this clustering problem
as a biobjective optimization problem and designed
PAN, a multiobjective evolutionary algorithm (MOEA),
to solve the problem. We tested several standard cluster
validity indices for their use as optimization goals
and several representations found in the literature to
represent a partitioning. Applying all representation/
validity index combinations to cluster several artificial
datasets with known optimal partitionings helped
identifying the strengths and weaknesses of the
different representations and validity indices, such that
a combination that reliably produces good partitionings
could be chosen.

The MOEA approach was then compared with the
standard clustering approach of repeatedly using the
k-medoids clustering algorithm for all possible number
of clusters. It has been observed that the partitionings
found by the MOEA achieve a higher hypervolume in
terms of decision and objective spaces goodness than
the partitionings found by the k-medoids algorithm.
When PAN is applied to a knapsack problem, the
relation between selected items and achieved profits
could be visualized. Also, the method was applied to
a real-world truss bridge optimization problem, where
a front containing 98 bridges could be visualized in a
compact manner by representing each cluster by a
representative bridge and by dividing the objective
space into regions to which the particular clusters
map. In conclusion, it has been found that the proposed
method is able to adequately cluster the solutions, such
that the clusters contain similar designs and are located
in compact regions in objective space.

Copyright © 2012 John Wiley & Sons, Ltd.

In the future, a measure to quantify the goodness of
tradeoff should be developed. That way, validity indices
could not only be compared according to the extreme
Pareto-optimal partitionings (which are either best in
decision or objective space) but also according to their
tradeoffs between the two extreme partitionings. Also,
there might be some user preferences; for example,
the user has a maximum number of clusters he or she
can handle, or he or she values cluster compactness
more than cluster separations. PAN could therefore
be adapted to incorporate such preferences. Furthermore,
PAN might be extended to provide some help in picking
one partitioning out of the set of partitionings that
is produced.

REFERENCES

Aittokoski T, Ayramo S, Miettinen K. 2009. Clustering aided
approach for decision making in computationally expen-
sive multiobjective optimization. Optimization Methods
and Software 24:157-174.

Bader J. 2010. Hypervolume-based search for multi-
objective optimization: theory and methods. PhD thesis,
ETH Zurich, Switzerland.

Bandaru S, Deb K. 2011. Towards automating the discovery of
certain innovative design principles through a clustering-
based optimization technique. Engineering Optimization,
Forthcoming Article.

Bandyopadhyay S, Maulik U. 2001. Nonparametric genetic
clustering: comparison of validity indices. IEEE Transactions
on Systems, Man, and Cybernetics 31:120-125.

Bezdek JC, Pal NR. 1995. Cluster validation with generalized
Dunn’s indices. In ANNES.

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

PARETO-SET ANALYSIS THROUGH CLUSTERING

Bushel PR, Wolfinger RD, Gibson G. 2007. Simultaneous
clustering of gene expression data with clinical chemistry
and pathological evaluations reveals phenotypic prototypes.
BMC Systems Biology 1:15.

Calinski T, Harabasz J. 1974. A dendrite method for cluster
analysis. Communications in Statistics - Theory and
Methods 3:1-217.

Calonder M, Bleuler S, Zitzler E. 2006. Module identification
from heterogeneous biological data using multiobjective
evolutionary algorithms. In PPSN.

Chou C-H, Su M-C, Lai E. 2004. A new cluster validity
measure and its application to image compression. Pattern
Analysis and Applications T: 205-220.

Conover WIJ. 1999. Practical Nonparametric Statistics
(3rdedn), John Wiley: Hoboken, USA.

Das S, Abraham A, Konar A. 2009. Metaheuristic Clustering.
Springer: London, UK.

Davies DL, Bouldin DW. 1979. A cluster separation measure.
IEEE Transactions on Pattern Analysis and Machine
Intelligence 1:224-227.

Deb K, Srinivasan A. 2006. Innovization: innovative
design principles through optimization. Technical report,
KanGAL, Indian Institute of Technology Kanpur.

Dunn JC. 1974. Well separated clusters and optimal fuzzy-
partitions. Journal of Cybernetics 4:95-104.

Eisen MB, Spellman PT, Brown PO, Botstein D. 1998.
Cluster analysis and display of genome-wide expression
patterns. Proceedings of the National Academy of
Sciences 95:14863—-14868.

Falkenauer E. 1998. Genetic Algorithms and Grouping
Problems. Wiley: Hoboken, USA.

Halkidi M, Vazirgiannis M. 2001. Clustering validity
assessment: finding the optimal partitioning of a data
set. In ICDM.

Halkidi M, Vazirgiannis M, Batistakis Y. 2000. Quality
scheme assessment in the clustering process. In PKDD.

Halkidi M, Batistakis Y, Vazirgiannis M. 2002. Clustering
validity checking methods: part II. SIGMOD Record
31:19-27.

Handl J. 2005. Multiobjective clustering around medoids.
In CEC.

Handl J, Knowles J. 2005a. Improvements to the scalability
of multiobjective clustering. In CEC.

Handl J, Knowles J. 2005b. Exploiting the trade-off:
the benefits of multiple objectives in data clustering.
In EMO.

Handl J, Knowles J. 2007. An evolutionary approach to multi-
objective clustering. IEEE Transactions on Evolutionary
Computation 11:56-76.

Houle M, Kriegel H-P, Kroger P, Schubert E, Zimek A.
2010. Can shared-neighbor distances defeat the curse of
dimensionality? In Scientific and Statistical Database
Management. Springer: Berlin, Heidelberg.

Hruschka ER, Campello RIGB, de Castro LN. 2006.
Evolving clusters in gene-expression data. Information
Sciences 176:1898-1927.

Hruschka ER, Campello RIJGB, Freitas AA, de Carvalho
ACPLF. 2009. A survey of evolutionary algorithms for

Copyright © 2012 John Wiley & Sons, Ltd.

clustering. IEEE Transactions on Systems, Man, and
Cybernetics 39:133-155.

Jornsten R, Vardi Y, Zhang C-H. 2002. A robust clustering
method and visualization tool based on data depth. In
In Statistical data analysis based on the Llinorm and
related methods.

Kaufman L, Rousseeuw PJ. 1987. Clustering by means of
medoids. Reports of the Faculty of Mathematics and
Informatics.

Kaufman L, Rousseeuw PJ. 1990. Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley: Hoboken, USA.
Kundu D, Suresh K, Ghosh S, Das S, Abraham A, Badr Y.
2009. Automatic clustering using a synergy of genetic
algorithm and multi-objective differential evolution.

In HAIS.

Kutalik Z, Beckmann JS, Bergmann S. 2008. A modular
approach for integrative analysis of large-scale gene-
expression and drug-response data. Nature Biotechnology
26:531-539.

MacQueen JB. 1967. Some methods for classification and
analysis of multivariate observations. In Proc. of the 5th
Berkeley Symposium on Mathematical Statistics and
Probability.

Milligan GW, Cooper MC. 1985. An examination of proce-
dures for determining the number of clusters in a data set.
Psychometrika 50:159-179.

Morse JN. 1980. Reducing the size of the nondominated
set: pruning by clustering. Computers and Operations
Research 7:55-66.

Narayanan M, Vetta A, Schadt EE, Zhu J. 2010. Simulta-
neous clustering of multiple gene expression and physical
interaction datasets. PLoS Computational Biology 6(4).

Obayashi S, Sasaki D. 2003. Visualization and data
mining of Pareto solutions using self-organizing map.
In EMO.

Park YJ, Song MS. 1998. A genetic algorithm for clustering
problems. In Proceedings of the 3rd Annual Conference
on Genetic Programming.

Pollard KS, van der Laan MJ. 2002. Statistical inference for
simultaneous clustering of gene expression data. Mathematical
Biosciences 176:99—121.

Pryke A, Mostaghim S, Nazemi A. 2006. Heatmap visuali-
zation of population based multi objective algorithms.
In EMO.

Rahami H, Kaveh A, Gholipour Y. 2008. Sizing, geometry
and topology optimization of trusses via force method and
genetic algorithm. Engineering Structures 30:2360-2369.

Rosenman MA, Gero JS. 1985. Reducing the Pareto optimal
set in multicriteria optimization. Engineering Optimization
8:189-206.

Rousseeuw P. 1987. Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of
Computational and Applied Mathematics 20:53-65.

Rudolph G, Naujoks B, Preuss M. 2007. Capabilities of
EMOA to detect and preserve equivalent Pareto subsets.
In EMO.

Sheng W, Liu X, Fairhurst M. 2008. A niching memetic algo-
rithm for simultaneous clustering and feature selection.

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

T. ULRICH

1EEE Transactions on Knowledge and Data Engineering
20:868-879.

Sugimura K, Jeong S, Obayashi S, Kimura T. 2009.
Kriging-model-based multi-objective robust optimization
and trade-off-rule mining using association rule with
aspiration vector. In CEC.

Taboada HA, Coit DW. 2007. Data clustering of solu-
tions for multiple objective system reliability optimization

Copyright © 2012 John Wiley & Sons, Ltd.

problems. Quality Technology and Quantitative Management
4:191-210.

Ulrich T, Brockhoff D, Zitzler E. 2008. Pattern identification
in Pareto-set approximations. In GECCO.

Ulrich T, Bader J, Thiele L. 2010. Defining and optimizing
indicator-based diversity measures in multiobjective
search. In PPSN.

Xu R, Wunsch DC. 2009. Clustering. Wiley: Hoboken, USA.

J. Multi-Crit. Decis. Anal. (2012)
DOI: 10.1002/mcda

