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ABSTRACT
Cyber-physical systems and the like have accelerated the growth

of demands for long-life energy-limited devices, encouraging the

major trend of using energy harvesting from renewable sources

like solar and wind. �e intermi�ency of these energies enforces

such energy-variable systems to possibly anticipate the changes,

and e�ciently adapt in face of either predicted or non-predicated

changes, i.e. they must be energy-resilient. In this paper, we tar-

get weakly-hard real-time energy-variable systems with multiple

performance levels. We formalize the concept of energy-resilience

in such systems, de�ne and prove some properties of the resilient

systems, and give a scheduler with the aim of maximizing the sys-

tem resilience through adaptive control of the system performance

with respect to the energy changes. Also, we propose an online

schedulability test that considers the initial available energy in the

storage unit and the (m,k)-�rm constraints. Furthermore, we give

an energy-resilient scheduling algorithm which employs model

predictive control. �e simulation results show that our proposed

method performs very good in approximating the optimal solution.
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Energy-aware scheduling, Energy harvesting, Resilience, Weakly-

hard real-time systems

ACM Reference format:
Mahmoud Shirazi, Mehdi Kargahi, and Lothar �iele. 2017. Resilient Sched-

uling of Energy-Variable Weakly-Hard Real-Time Systems. In Proceedings
of International Conference on Real-Time Networks and Systems, Grenoble,
France, October 2017 (RTNS 2017), 10 pages.

DOI:

1 INTRODUCTION
�e need to green energies, infrastructure to use traditional energy

sources, and the need for device portability are of the reasons

to emphasize using renewable sources like solar, wind, vibration,

thermal, etc. Energy harvesting is the process of capturing energy

from external sources, converting it into electrical energy, and using

it immediately or conserving it into storage units for future use

[1]. However, in contrast to traditional energy sources which �ow
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when a knob is turned, renewable energy sources like solar and

wind produce intermi�ently as the sun shines or the wind blows;

this is a major challenge of using these sources [2].

�e intermi�ency of energy harvesting from renewable energy

sources enforces the energy-variable systems to possibly anticipate

the changes, and adapt in face of either predicted or non-predicated

changes. In fact, such systems must be energy-resilient, i.e. they

are to persist performability when facing changes in the harvested

energy.

In this paper, we target weakly-hard real-time (WHRT) energy-

variable systems with multiple performance levels for individual

tasks as well as the system. �e rate of harvesting energy is subject

to change at intervals with speci�c granularity, which can be pre-

dicted with some level of accuracy. In this paper, we assume that

there is a lower bound on the predicted charging rates. �e aim is

to have an energy-resilient system, namely a system which maxi-

mizes the system performance, guarantees the system survivability,

and tries to minimize the time taken to recover from the possibly

degraded performance.

To the best of our knowledge, we are unaware of any previ-

ous study on energy-resilient scheduling of weakly-hard real-time

systems. �ere are some related works in the area of real-time

scheduling, including transient fault tolerance [3–6], overload man-

agement [7–10] and mixed-criticality systems [11–13]. Also, there

exist some works on energy-e�cient scheduling [14–16], energy-

aware scheduling [17–20], and resilient scheduling [21]. In [21], the

authors propose a hard real-time scheduling method for multipro-

cessor systems which is resilient to core failure via job redundancy.

None of these works concentrate on the resilience of real-time sys-

tems with the aim of simultaneously minimizing the maximum

performance deviation and the automatic recovery time to the tar-

get performance.

�e contribution of this paper is as follows:

• Proposing a measure of energy-resilience considering the

survivability, time to recovery (TTR), and real performance

of the system,

• Providing partial-order between performance of (m,k)-�rm

constraints given an arbitrary (m,k)-�rm pa�ern,

• De�ning the system safety, including its performance and

energy safety, for some pa�ern in a WHRT system and

proving some theories about that,

• Proposing an energy-aware schedulability condition with

low computational complexity, given the initial available

energy and the (m,k)-�rm constraints, and
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• Using Model Predictive Control (MPC) in a proposed energy-

resilient method to approximate the optimal solution, and

proving that the approximation factor of the solution is

less than or equal to 2.

�e rest of this paper is organized as follows: Section 2 describes

the system model including WHRT constraints and its pa�erns,

energy supplier, and energy consumer. Section 3 de�nes energy-

resilience and its metric based on the system performance and the

problems considered in this paper. �e resilient scheduler might

enforce changing the system performance with the aim of max-

imizing its resilience, considering the possibility of performance

and energy anomalies. In Section 4, we give some de�nitions and

properties of the system to avoid such anomalies. Section 5 dis-

cusses our proposed online schedulability test. Section 6 describes

our proposed energy-resilient method and Section 7 reports the

experimental results. Finally, Section 8 concludes the paper.

2 SYSTEM MODEL
In this paper, we consider a single processor energy harvesting

WHRT system consisting of an energy harvester (which scavenges

energy from a continuous variable energy source), an energy stor-

age unit (e.g. ba�ery or super-capacitor), and an energy consumer

(processing) unit consisting of a set of periodic tasks. In the fol-

lowing, we �rst describe the WHRT system in Subsection 2.1. We

then express the energy consumer unit including the task model in

Subsection 2.2. Finally, the energy supplier model, including the

energy harvester and the energy storage unit, is given in Subsection

2.3.

2.1 Weakly-Hard Real-Time Systems
A WHRT system is a system in which the temporal constraints of

periodic tasks can tolerate some well-de�ned degrees of deadline

misses [22]. A type of such constraints for WHRT systems is the

(m,k)-�rm constraint, i.e. in any window of k consecutive jobs of

a task, at least m jobs must meet their deadlines [23]. To satisfy

the (m,k)-�rm constraint, some jobs are selected as mandatory to

meet their deadlines; the other jobs are called optional which can

be dropped if necessary [24]. �e selection of mandatory jobs can

be done according to some pa�erns, where there exist well known

pa�erns like E-pa�ern, which evenly distributes mandatory jobs as

equally as possible, [25] and R-pa�ern (Red-only), which selects the

�rstm out of portions with k jobs as mandatory [26]. In order to

formally de�ne such pa�erns, we need to �rst de�ne (m,k)-pa�ern

as below:

De�nition 2.1. ((m,k)-pattern) [26]: Suppose τi is a task, and

τi j is the j-th job of which. �e (m,k)-pa�ern of task τi , denoted

by ϕi , is a binary string ϕi = {φi0φi1...φi (k−1)
} which satis�es the

followings: (i) τi j is a mandatory job if φi j = 1 and it is an optional

job if φi j = 0, and (ii)

(k−1)∑
j=0

φi j = m.

E-pattern [25]: To satisfy the (m,k) constraint of task τi accord-

ing to E-pa�ern, the mandatory jobs are to be distributed equidis-

tantly as much as possible according to (1) below:

φi j =

{
1, i f j =

⌊⌈
j×m
k

⌉
× k

m

⌋
0, otherwise

j = 0, 1, ...,k − 1 (1)

R-pattern [26]: To satisfy the (m,k) constraint of task τi ac-

cording to R-pa�ern, a�er partitioning the jobs into sequences of

k jobs (except for the last partition), the �rst m out of k jobs are

selected as mandatory. More formally, this pa�ern satis�es (2):

φi j =

{
1, i f 0 ≤ j < m
0, otherwise

j = 0, 1, ...,k − 1 (2)

Scheduling a task with di�erent (m,k) constraints may provide

di�erent performances. For example, scheduling with the (3, 4)

constraint may lead to a be�er performance with respect to (2, 4).

�e relation of the (m,k)-�rm constraints in E-pa�ern is straight-

forward; a constraint with bigger m/k outperforms another with a

smaller one. However, in R-pa�ern the relation of (m,k) constraints

is more complicated; for example, a (3, 5)-�rm task is not be�er

than (1, 2) in R-pa�ern, even though 3/5 ≥ 1/2.

Another important point relates to possible anomalies during

changes in the system performance level which may be triggered

to be resilient with respect to energy changes. For example, the

scheduler may decrease the performance of a task which runs

according to R-pa�ern from (3, 4) to (2, 4); in this example, there

are some transition windows
1

which are (2, 5)-�rm, namely some

window with performance less than both (3, 4) and (2, 4).

In Section 3, we show the performance relations of the constrains

for the pa�erns, based on which, in Section 4 we discuss the safety
property as an essential property that a pa�ern must have to be

appropriate for an energy-resilient system.

2.2 Energy Consumer Model
�e energy consumer is a set of n real-time �xed priority periodic

tasks τi : (ei ,πi ,powi ,Mi ), 1 ≤ i ≤ n, where ei is the worst-

case execution time (WCET), and πi denotes the task period (with

implicit relative deadline). Further, powi is the worst-case power

consumption of τi , i.e. each instance of τi consumes up to powi ×ei
units of energy.

�e hyperperiod for the periodic tasks is shown as Π = LCM(πi ).
Also, L de�nes the maximum performance level of the system (dis-

cussed in detail in Section 3.1). Mi is a set of tuples with the size of

L + 1 that shows the pre-de�ned (m,k)-�rm constraints of task τi :

Mi = {(mil ,kil )| mil ≤ kil and 0 ≤ l ≤ L }. (3)

We assume that the predictions are done with the resolution

of the hyperperiod, i.e. the harvesting energy is considered con-

stant along with a hyperperiod and the changes occur only at the

hyperperiod boundaries. Accordingly, for each task τi we have

Π

πi mod kil = 0, for all 0 ≤ l ≤ L. �is implies that the performance

changes do not occur in the middle of any window of size kil .
We assume that the tasks are ordered according to their priorities

where τ1 is the highest priority task and all of them use the same

(m,k) pa�ern ϕ which can be either E-pa�ern or R-pa�ern. Further,

we consider the system in the time interval of [0,T ] which includes

T /Π hyperperiods.

1
Transition window is a sliding window with jobs from two adjacent windows with

di�erent (m,k) constraints.
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2.3 Energy Supplier Model
�e energy supplier unit consists of an energy harvester and an

energy storage unit. �e energy harvester scavenges energy from

a renewable energy source. �ere are many exploitable sources

of environmental energy such as solar, wind, piezoelectric, radio

frequency, etc. However, the yielded energy is not necessarily

stable over time. For example, the energy generated by a solar cell

depends on the intensity of light which is highly variable because

of the day/night cycles and the weather conditions.

In the following, we suppose a solar panel which can charge the

storage unit with the rates in the range of [0,Ratemax ] during the

day. During night, however, the charging rate is 0. (�is paper is

not restricted to this energy source, however, the assumption helps

more smooth discussions.) We assume that there is a prediction

method which gives a lower bound on the charging rates for a time

horizon of H hyperperiods.

�e replenishment of the storage unit is performed continuously

even during the execution of tasks. �e harvested energy in the

time interval of [t1, t2], that is characterized by an instantaneous

charging rate Rate(t ), is given as [27–31]:

EP (t1, t2) =

t2∫
t1

Rate(t )dt (4)

As the other part of the energy supplier, we consider an ideal

energy storage unit. It has a nominal capacity Emax . We assume

that the storage unit has neither charging ine�ciency, nor energy

leakage. Furthermore, there is a safe available energy, Emin ; if there

is Emin units of energy in the storage unit, the system can survive

during night (i.e. when the charging rate is zero) constantly at the

minimum performance level.

3 ENERGY-RESILIENCE
Resilience is fundamentally de�ned as either ”resuming the original

shape or position a�er being bent, compressed, or stretched” or

”rising readily again a�er being depressed” [32]. In a more formal

de�nition, resilience is the persistence of performability when fac-

ing changes [33]; a resilient system must survive at some capacity,

in order to autonomously recover [34]. In this paper, we consider

the changes in the harvested energy that can a�ect the achievable

performance of the system and the aim of this paper is to have an

energy-resilient system.

De�ned resilience metrics in the literature typically relates to

the target performance curve, Per fTarдet (t ), and the real perfor-

mance curve, Per fReal (t ) [35–38]. Target performance is the max-

imum feasible performance of the system and real performance

records performance changes under disruptive events and the sys-

tem restoration e�orts. Resilience can then be quanti�ed as the

ratio of the area below Per fReal (t ) and that below Per fTarдet (t )
within the same time period of [0,T ] [38]:

R(T ) =

T∫
0

Per fReal (t )dt

T∫
0

Per fTarдet (t )dt

(5)

�erefore, we �rst need to de�ne the performance of the sys-

tem (Subsection 3.1). However, the above simple de�nition of the

resilience measure has some de�ciencies (given in the following)

with respect to the properties of a resilient system [33, 34], and thus

it needs improvement, as done in Subsection 3.2: 1) If the system

is scheduled at performance level 0 at a time t , the system is not

surviving, even though the value of resilience calculated by (5) can

get some value greater than 0, 2) the system might have no trend

back to its best performance despite that there is no charging rate

reduction and the value of (5) is greater than 0. For the sake of more

clarity, we consider an example that the maximum performance

level of the system is L. Let’s consider system A that schedules the

tasks at performance level l < L in the time interval of [0,T ] and

system B that schedules them at performance level l − 1, and then

a�er some time t elevates the performance level to L, which is held

to the end of the same interval. If (l −1)× t +L× (T −t ) < l ×T , then

A is supposed more resilient than B according to (5), even though

it performs nothing to approach the best performance.

3.1 Performance
As mentioned in Subsection 2.2, each task is supposed to have a set

of size L + 1 of user-de�ned (m,k)-�rm constraints, corresponding

to the system performance levels. �e following proposition de�nes

the constraint relations.

Proposition 1. For a periodic task τi , using any arbitrary pat-
tern, the (mil ,kil )-�rm constraint outperforms the (mil ′ ,kil ′ )-�rm
constraint, shown as (mil ,kil ) ≥ (mil ′ ,kil ′ ), if at least one of these
conditions holds:

(1) mil = kil andmil ′ = kil ′
(2) mil ′ = mil − 1 and kil ′ = kil
(3) mil ′ = mil and kil ′ = kil + 1

(4) mil ′ = mil − 1 and kil ′ = kil − 1

(5) ∃c ∈ Z+,mil ′ = c ×mil and kil ′ = c × kil

Proof. See Appendix A. �

Proposition 1 shows the relation between (m,k) constraints dis-

regarding the pa�ern, i.e. it works for all pa�erns including R-

pa�ern and E-pa�ern. In all conditions of the proposition we

have
mil ′

kil ′
≤

mil
kil

. For E-pa�ern, this relation results in some

performance order, however, as also mentioned in the example

of Section 2.1, it does not necessarily represent any performance

order between (mil ,kil ) and (mil ′ ,kil ′ ) constraints. �us, Propo-

sition 1 does not represent some total relation (in which, for all

(mil ,kil ) and (mil ′ ,kil ′ ), we have either (mil ,kil ) ≥ (mil ′ ,kil ′ ) or

(mil ′ ,kil ′ ) ≥ (mil ,kil )); rather, when there is no restriction on the

pa�ern, thus proposition gives only a partial order.

Regarding the mentioned uncomparability of some constraints

for speci�c pa�erns, some (m,k) constraints may result in situa-

tions that it is not de�ned whether a desired performance level has

been satis�ed. To overcome this issue, for each task τi , we add a

performance level 0 with constraints (0, max

1≤l ≤L
(kil )), as the lowest

performance level which is valid and comparable to all performance

levels, to the performance table. At performance level 0, the sched-

uler cannot guarantee any user-de�ned performance level. In this

way, when there is no user-de�ned performance level lower than
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some (m,k) constraint, the performance level of the constraint is

considered 0. In a similar fashion, the performance of task τi at

time t , when it is (mi ,ki )-�rm, is de�ned as follows:

Per f (τi ) = max({l |(mi ,ki ) ≥ (mil ,kil )}) (6)

�e performance of the system is then the minimum performance

of all tasks:

Per f = min

1≤i≤n
(Per f (τi )) (7)

We assume that the minimum acceptable performance of the

system, at which the system still survives, is 1. Also, we study

non-overloaded systems with utilization U =

n∑
i=1

ei
πi ×

miL
kiL
≤ 1.

�us, the maximum performance of the system when there is no

energy constraint is L.

3.2 Resilience Measure
Resilience of a system depends on the system survivability, its

maximum performance disturbance, and the time to recovery to the

goal performance. When the system is scheduled at performance

level 0, it is not alive, and R(T ) = 0. Furthermore, the system must

have a trend to approach the best performance when there is no

negative change in the system (charging rate, here). Additionally,

it is expected that a resilient-system maximize the integral of its

real performance. Accordingly, we de�ne our measure of energy-

resilience in the following.

Suppose that Rateh and Per fh (computed by (7)), respectively,

are the charging rate and the real performance level of the system

during the hth hyperperiod, where h = 1, 2, ...,T /Π. Also, let’s

de�ne Per fmin = min

1≤h≤T /Π

(Per fh ) for T /Π hyperperiods of the

system. �en, we use the result of min(Per fmin , 1) to consider the

survivability of the system, which returns 0, when there is at least

one hyperperiod h (out of theT /Π hyperperiods) with performance

level 0; otherwise, it returns 1.

Another part of the resilience measure relates to the expectation

that the system approaches its best performance while there is no

negative change in the charging rates. Suppose x+
= max(0,x).

If the charging rates are non-decreasing during two consecutive

hyperperiods h and h + 1, the value of (Rateh − Rateh+1
)
+

is equal

to 0; otherwise, it is equal to or greater than 1. �us, we de�ne:

min(

H−1∑
h=1

(Rateh − Rateh+1
)
+, 1) ={

0, I f the charдinд rates are non − decreasinд
1, o.w .

(8)

If there is no negative change in the performance of the system

during two consecutive hyperperiods h and h + 1, the value of

(Per fh+1
− Per fh + 1)

+
is equal to or greater than 1; otherwise, it is

equal to 0. �us:

min((Per fh+1
− Per fh + 1)

+, 1) ={
1, I f there is no neдative chanдe in the system per f ormance
0, o.w .

(9)

�en, we can calculate the maximum value of (8) and (9), and

de�ne the TTR coe�cient of the hth hyperperiod as:

TTR CO(h) = max(min(

H−1∑
h=1

(Rateh − Rateh+1
)
+, 1),

min((Per fh+1
− Per fh + 1)

+, 1)) (10)

�e value of TTR CO(h) is 0 when the charging rates are non-

decreasing and the system performance has negative changes; oth-

erwise, TTR CO(h) = 1.

�e remaining part of our resilience measure relates to the sys-

tem real and target performances, similar to what is mentioned in

(5). �erefore, the resilience of the system in the time interval of

[0,T ] can be calculated as follows:

R(T ) = min(Per fmin , 1)× min

1≤h≤T /Π

(TTR CO(h))×

T /Π∑
h=1

Per fh

L × T
Π

(11)

where the third part of (11) shows the ratio of the real and target

performance of the system.

3.3 Problem De�nition
�e main problem considered in this paper is the resilience of the

system with the model de�ned in Section 2.

Problem 1. Suppose the time interval of [0,T ], with the hyper-
period index of h, 1 ≤ h ≤ T /Π, and the prediction horizon of H
hyperperiods, where the system performance can only be changed at
the hyperperiod boundaries. Given n periodic task set τi , 1 ≤ i ≤ n,
and the corresponding performance levels (mil ,kil ), 0 ≤ l ≤ L, deter-
mine how we can maximize R(T ).

In order to maximizing the system resilience, the scheduler needs

to know at what performance level the task set is schedulable, given

the current charging rate and the initial available energy in the

storage unit as well as the (m,k) constraints. �erefore, we need

a schedulability test to give the answer, which is to be addressed

before the abovementioned problem.

Problem 2. Given a periodic task set of tasks τi , 1 ≤ i ≤ n,
the (mil ,kil ) constraints for each task τi . 0 ≤ l ≤ L, the initial
available energy in the storage unit, and the constant charging rate
Rate , determine the performance level 0 ≤ l ≤ L at which the task
set is schedulable in a hyperperiod.

�ere are su�cient schedulability test for �xed-priority hard

real-time systems with energy harvesting [39]. �is schedulability

test should be re�ned in order to solving Problem 1. Because, it

has a huge computational complexity that makes it unsuitable for

a resilient scheduling algorithm which needs to know at what

performance level the task set is schedulable during the runtime.

Furthermore, solving the main problem of this paper (Problem 1),

is face to another problem: the safety of performance changes; the

scheduler changes the system performance with the aim of maxi-

mizing the system resilience. �ese changes may lead to anomaly.

For example, decreasing the performance level of the system from l
to l − 1 may leads to have a transition window with the lower per-

formance level than l −1. Furthermore, decreasing the performance

may leads to increasing in the energy consumption using some pat-

terns. �erefore, our solutions must be anomaly care. In the next



Resilient Scheduling of Energy-Variable Weakly-Hard Real-Time Systems RTNS 2017, October 2017, Grenoble, France

section, we de�ne the safety of the system, including performance

and energy safety, and we prove some theories about them.

4 SAFETY
Safety, in the context of this paper, means lack of anomaly, including

performance and energy anomalies, when the scheduler reacts at

time t = (h − 1)Π,h = 1, ...,T /Π in face of changes.

De�nition 4.1. (Performance Safety) Suppose that the system

changes its performance Per f (see (7)) at an arbitrary time t ∈ [0,T )

and all of the tasks use the same pa�ern ϕ. �en, the (m,k) con-

straint of task τi , 1 ≤ i ≤ n, changes from (mi ,ki ) to (m′i ,k
′
i ).

ϕ is performance safe if for each transition window of task τi
which satis�es some (m′′i ,k

′′
i ) constraint, we have either (mi ,ki ) ≥

(m′′i ,k
′′
i ) ≥ (m′i ,k

′
i ) or (m′i ,k

′
i ) ≥ (m′′i ,k

′′
i ) ≥ (mi ,ki ).

Assume that, ElC (t ,T ) is the energy consumption of the tasks that

are scheduled at performance level 0 ≤ l ≤ L in the time interval

of [t ,T ]. When t = (h − 1)Π,h = 1, ...,T /Π, it can be computed as:

ElC (t ,T ) =

T − t

Π

n∑
i=1

Π

πi
×
mil
kil
× ei × powi (12)

De�nition 4.2. (Energy Safety) Suppose that the system which

uses the pa�ern ϕ for all its tasks changes its performance at an

arbitrary time t ∈ [0,T ) from l to l ′, where l > l ′ and 0 ≤ l , l ′ ≤ L.

ϕ is energy safe if it is performance safe and El
′

C (t ,T ) ≤ ElC (t ,T ).

Let’s discuss the performance safety and energy safety of R-

pa�ern and E-pa�ern.

Theorem 4.3. R-pa�ern is neither performance safe nor energy
safe.

Proof. Let’s consider the conditions of Proposition 1. In the

third condition, all transition windows are either (m,k) or (m,k + 1).

In the second condition, there are k−m transition windows that are

(m − 1,k + 1), as can be seen in Figure 1. Furthermore, in the forth

condition, there are k −m transition windows that are (m − 1,k).

As (m,k) ≥ (m − 1,k) ≥ (m − 1,k + 1) and (m,k) ≥ (m − 1,k − 1) ≥

(m − 1,k), R-pa�ern is not performance safe. Consequently, as an

energy safe pa�ern need to be performance safe (see De�nition

4.2), R-pa�ern is not energy safe.

Figure 1: R-pattern is not performance safe considering the
second condition of Proposition 1

�

Theorem 4.4. E-pa�ern is performance safe.

Proof. According to Corollary 2 in [24], all transition windows

of E-pa�ern would meet one of the (m,k) constraints between any

two windows in transition. �erefore, when the (m,k) constraint

of τi changes from (mil ,kil ) to (mil ′ ,kil ′ ), all transition windows

have the (m,k) constraint between (mil ,kil ) and (mil ′ ,kil ′ ). �

Theorem 4.5. E-pa�ern is energy safe.

Proof. According to the Lemma 4 in [24], �e number of manda-

tory jobs in the time interval of [t ,T ) in the E-pa�ern for constraint

(mil ,kil ) is greater than or equal to that in a time interval of the

same length for constraint (mil ′ ,kil ′ ), when
mil ′

kil ′
≤

mil
kil

. �en, we

have:

ElC (t ,T ) =
T−t

Π

n∑
i=1

Π

πi ×
mil
kil
× Powi × ei

≥ T−t
Π

n∑
i=1

Π

πi ×
mil ′

kil ′
× Powi × ei = El

′

C (t ,T )

�

�e above theories shows that using E-pa�ern ensures that the

performance changes does not lead to anomaly; hence, the rest of

this paper uses E-pa�ern.

5 SCHEDULABILITY TEST
Our approach is to give an online schedulability test (Online-ST) for

(m,k)-�rm constraints subject to the available energy of the storage

unit. We use PFPASAP [28] scheduling algorithm which at any

time, selects the job of the highest priority active task and executes

the next execution time unit of that job if there is su�cient energy

available to do so. Abdeddaim et al. [39] derive the response time

upper bound providing su�cient schedulability tests for PFPASAP
when there are consuming

2
and gaining tasks

3
.

Two reasons make this schedulabilty test, that we call it O�ine-

ST
4
, unsuitable for an energy-resilient system: 1) Its time complex-

ity is exponential with respect to the number of tasks and the length

of the hyperperiod, 2) it don’t consider the initial available energy

in the storage unit and (m,k)-�rm constraints. Our energy-resilient

scheduling method needs to know the performance levels at which

the task set are schedulable regards to the amount of energy in the

storage unit and (m,k)-�rm constraint during runtime. �erefore,

we propose an online schedulability test according to the following

theorem:

Theorem 5.1. A task set τi : (ei ,πi , Powi ,Mi ), 1 ≤ i ≤ n is
schedulable at performance level l , 0 ≤ l ≤ L, given the charging rate
Rate , with the initial available energy IE, if

∀1 ≤ i ≤ n
i∑
j=1

⌈⌈
πi
πj

⌉
mjl

kjl

⌉
ej ≤ πi (13)

and

2
�e consuming task is a task with the energy consumption higher than the replenish-

ment rate.

3
�e tasks that have a rate of energy consumption equal or less than the replenishment

rate

4
O�ine Schedulability Test
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max

1≤i≤n

©­­­­«
i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × (pow j − Rate)

+
+

(
Π

πi − 1)(

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × pow j

−Rate × πi )
+

ª®®®®¬
≤ IE (14)

Proof. PFPASAP executes all higher priority tasks before the

lower priority ones. Hence, the periodic task τi meets its deadline

if within a period of it, i.e. in the intervals of [(w − 1) × πi ,w × πi ]

for w ∈ {1, 2, ..., Π

πi }, we have

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej ≤ πi . �erefore,

for all tasks τi , 1 ≤ i ≤ n the inequality (13) must hold.

Within a period of τi , in a pessimistic condition, the execution

of the task τj , where j ≤ i , must be started at time tj = w × πi −
i∑

q=j

⌈⌈
πi
πq

⌉ mql
kql

⌉
× eq . At that time, the system must have at least

ej×(pow j − Rate)
+

units of energy in the storage unit to execute the

task τj . �erefore, the storage unit energy at the start ofwth
period

of τi , i.e. E((w − 1) × π ) where E(t ) denote the storage unit energy

at time t , must be at least

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × (pow j − Rate)

+
. In

such condition, the amount of energy in the storage unit at the end

of the period is as follows:

E(w×πi ) = E((w−1)×π )+Rate×πi−
i∑
j=1

⌈⌈
πi
πj

⌉
mjl

kjl

⌉
×ej×pow j (15)

�e di�erence of the stored energy at the start and the end of

the wth
period will be (

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ei × powi − Rate × πi )

+
.

�erefore, the amount of energy in the storage unit at the start of

the hyperperiod in order to executing the task τi , IEi , is as follows:

IEi =

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × (pow j − Rate)

+
+

(
Π

πi − 1)(

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × pow j − Rate × πi )

+

(16)

�e amount of energy needed to executing all task at the start

of the hyperperiod is the maximum value of IEi , 1 ≤ i ≤ n. So,

inequality (14) and the theorem are proven. �

Online-ST has low computational complexity with respect to

O�ine-ST. However, its error is more than O�ine-ST as will be

shown by experiments in Section 7.

6 ENERGY-RESILIENT ALGORITHM
�e proposed energy-resilient algorithm determines the perfor-

mance level of the system at the start of each hyperperiod with the

aim of maximizing the resilience in the given time interval [0,T ].

It is utilized by MPC approach [40] in which at the start of each

hypeprperiod, an optimal control problem is solved and the control

input is applied for the current hyperperiod. �en, the state of

the system is updated and at the start of the next hyperperiod the

control problem is solved again.

In this paper, we have two models. �e �rst one is based on

the Integer Linear Programming (ILP) which can �nd the optimal

solution
5
. �is model can not be used as an online solution due to

its huge computational complexity. �e second model relaxes the

control input in order to reducing the time complexity of the �rst

model. We prove that the approximation ratio of the second model

is less or eqaul than 2. �e �rst model is as follows:

min −
H∑
h=1

A × uh

s .t .
Eh+1

= Eh + B × uh + Π × Rateh
0 ≤ Eh ≤ Emax

D × uh = 1

uh (j) ∈ {0, 1} 1 ≤ j ≤ L
PR × ddiaд(C × uh )e × e ≤ π
| |PR × ddiaд(C × uh )e × (e .(pow − Rateh )

+
)+

Q × (PR × ddiaд(C × uh )e ×V − Rateh × π )
+ | |∞ ≤ Eh

(1 −TTR) ×A × (u2 − u1) ≥ 0

(17)

where uh is a binary vector of size L as the control input and

Eh is the state of the system corresponds to the amount of energy

in the storage unit at the start of the hth hyperperiod. uh (j) is

the jth element of uh and TTR = min(

H−1∑
h=1

(Rateh − Rateh+1
)
+, 1)

is the time to recovery parameter. �e other notations as as fol-

lows: A is the performance level coe�cient; it is a vector of per-

formance level indices of size L starts from L and end to 1. B =

[−ELC (0,Π) − EL−1

C (0,Π) ... − E1

C (0,Π)] is the energy consumption

vector and C is the ratio of (m,k) constraints; it is a matrix of size

n × L where the value of the ith row and the jth column of it,

i.e. C(i, j) is mi (L−j+1)
/ki (L−j+1)

. D = [1...1] is a vector of size L.

e = [e1 e2 ... en]
′

is a vector of size n includes the WCET of the

tasks, where x ′ is the transpose matrix of x . π = [π1 π2 ... πn]
′

and pow = [pow1 pow2 ...pown]
′

are the periods and the power

consumption of all tasks, respectively. PR is a n×n lower triangular

matrix contains the ratio of the task periods as follows:

PR(i, j) =

{ πi
πj i f i ≥ j

0 o.w .

where PR(i, j) is the value of the ith row and the jth column of

PR. Q = (Π/pi)− 1,V = e .pow , and ‖.‖∞ is the in�nity norm which

in (17), it is equal to the maximum norm.

Solving the optimization problem (17) have a huge computational

complexity. We relax the control parameter and the Online-ST of

(17) in the second model which leads to a sub-optimal solution as

follows:

min −
H∑
h=1

д(uh )

s .t .
Eh+1

= Eh +G × uh + Π × Rateh
0 ≤ Eh ≤ Emax

umin ≤ uh ≤ 1.0

PRE × uh + SE ≤ π
| |PRE × (uh .(Pow − Rateh )

+
) + e × (Pow − Rateh )

+
+

Q × (PRE × (uh .V ) + Z − Rateh × π )
+ | |∞ ≤ Eh

(1 −TTR) × (д(u2) − д(u1)) ≥ 0

(18)

5
With respect to the prediction error and su�cient schedulability test.
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where in this model, uh is a vector of size n. Each element of this

vector shows the ratio of m and k in (m,k)-�rm model. д(uh ) is the

objective function that converts the ratio of m and k to the system

performance. As (m,k) constraints are de�ned by user, the objective

function may be di�erent with respect to the de�ned performance

levels. However, it must be a linear function which if for each task

τi ,
mil
kil
≤ uh (i) <

mi (l+1)

ki (l+1)

then l ≤ д(uh ) < l + 1. �e other notations

of (18) are as follows: umin = [m11/k11 m21/k21 .... mn1/kn1]

includes the (m,k) ratio of the tasks at performance level 1. Note

that this is the minimum performance level of the system at which

the system is alive. �e value of the ith row and the jth column of

PRE, i.e. PRE(i, j), is as follows:

PRE(i, j) =

{ πi
πj ej i f i > j

0 o.w .

SE is a vector of size n; the ith element of SE is

i∑
k=1

ek and

Z = e ′ × pow .

�e optimization problem of (18) is a relaxed version of (17) in

which the controller determines the value of
mil
kil

of each task τi at

performance level 1 ≤ l ≤ L; actually, it uses the facts that for the

tasks τi and τj at performance level l ,
⌈⌈
πi
πj

⌉
×

mjl
kjl

⌉
=

⌈
πi
πj ×

mjl
kjl

⌉
≤

(
πi
πj ×

mjl
kjl

) + 1, and

⌈
mil
kil

⌉
= 1 where mil > 0. As (18) is a relaxed

version of (17) which ignores some integer constraints, such as

ceil function, it can be solved many faster than (17). Appendix

B shows the simpli�cation of (13) and (14) that leads to have the

schedulability conditions in (18).

At the start of each hyperprtiod, the scheduler solve the relaxed

optimization problem and schedules the task set at performance

level bд(u1)c. �eorem 6.1 shows the approximation ratio of (18).

Theorem 6.1. �e approximation ratio of (18) is less than or equal
to 2;

Proof. �e relaxation of the schedulability conditions is corre-

spond to the execution of one more job of each task (see Appendix

B). Hence, there is at least one task that may go to the performance

level l + 1. Note that, there are no performance levels that are quite

similar, otherwise, they have the same label. As the performance

level of the system is the minimum performance level of all tasks,

the di�erence of the schedulability test, i.e. (13) and (14), and its

relaxed version is at most one performance level. �erefore, at the

start of each hyperperiod the di�erence of the selected performance

level by (17) and (18) is at most 1. Hence, for theT /Π hyperperiods,

the ratio of the optimal solution, i.e. OPT , and the relaxed MPC is

as follows:

Approximation Factor =

OPT

OPT −T /Π
(19)

In some situations, the optimal solution may exist at performance

level 1 whereas the relaxed MPC may goes to performance level

0. �is may leads to have an invalid approximation factor by (19).

�erefore, without loss of generality, we may simply assume that

the performance levels starts from 1 to L + 1 and scheduling the

tasks at performance level 1 violates the survivability of the system.

By this assumption, if there is a resilient solution, i.e. R(T ) > 0, we

have OPT ≥ 2 ×T /Π and hence the approximation factor, i.e. (19),

is less or equal than 2. �

7 EXPERIMENTAL RESULTS
�is section shows the results of our experiments that show the

error of the proposed schedulability test and the e�ectiveness of

the proposed energy-resilient method.

7.1 Task Set Generation
�e task generation is based on the UUnifast algorithm [41] and

the hyperperiod limitation technique [42]. �e task parameters are

randomly generated as follows: the task utilizations are generated

using the UUnifast algorithm; the periods are generated with a

hyperperiod limitation technique and the power consumption of

the tasks are between 1 and 10 units of energy.

In order to generating the (m,k) constraints of the tasks in our

experiments, for each task τi , the maximum value in the interval

of [1, 9]
6
, namely κi , that satis�es

Π

πi mod κi = 0 is computed. �e

maximum performance level of the system, i.e. L, is the maximum

value of κi , 1 ≤ i ≤ n. For each task τi , we set ki1 = ki2 = ... =

kiL = κi . At each performance level 1 ≤ l ≤ L, the (m,k) constraint

of task τi is (max(l − L + kil , 1),kil ) and at performance level 0, the

constraint is (0,kil ).

7.2 Tightness of Online-ST
In order to measuring the error of the Online-ST with respect to the

performance level that the task set is schedulable using PFPASAP ,

we compare the result of �eorem 5.1, i.e. Online-ST, with the real

performance level that the task set is schedulable at it. For each

task set we construct a table; each rows of this table correspond to

a charging rate in the interval of [0,Ratemax ] and each column is

correspond to an initial available energy in the interval of [0,Emax ].

�e (i, j)-th cell of the table shows the maximum performance level

at which the task set is schedulable while the charging rate is

i and the initial available energy is j. �e value of each cell is

computed using Online-ST; we call this table as MSPTOnline−ST
7

and O�ine-ST, MSPTOf f line−ST . On the other hand, we �ll this

table according to PFPASAP ; for the given initial available energy

and charging rate, we run PFPASAP at maximum performance level

(L); if there is any deadline miss, we try to schedule the tasks at

performance level L − 1, otherwise L is the maximum performance

level that the task set is schedulable at which using PFPASAP given

the charging rate and initial available energy; it is repeated as long

as such maximum performance level is found. We call the table as

MSPTPFP ASAP .

�e error of a schedulability test x , which x is either Online-ST

or O�ine-ST, can computed as follows:

Error =

MSPTPFP ASAP (Rate,E(0)) −MSPTx (Rate,E(0))

MSPTPFP ASAP (Pr ,E(0))

(20)

whereMSPTPFP ASAP (Rate,E(0)) andMSPTx (Rate,E(0)), respec-

tively, are the maximum performance level at which the tasks are

schedulable according to PFPASAP and schedulability test x , given

6
Simply assume that each task has at most 9 performance levels

7
Maximum System Performance Table of Online-ST
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the charging rate Rate and the initial available energy E(0). Note

that the error value is a positive number.

Figure 2 shows the error of Online-ST and O�ine-ST. Each point

in Figure 2 shows the mean and variance of the error of the schedu-

lability tests for 50 task sets with the given utilization. �e number

of tasks in each task set is 5 and 10 in Figure 2.a and Figure 2.b,

respectively. As can be seen, the error of the proposed Online-ST

is negligible with respect to O�ine-ST. In terms of time, Online-ST

takes about 100 to 250 milliseconds while O�ine-ST takes several

minutes to compute the schedulability of the tasks set in a Core i7

2.8 GHz CPU.

7.3 Energy-Resilient Scheduling
In this section, we illustrate the e�ectiveness of our proposed

energy-resilient algorithm. For MPC design we have used YALMIP

toolbox [43]. At the start of the hth hyperperiod, the controller gets

the value of Eh = E((h − 1)×Π), [Rateh Rateh+1
...Rateh+H−1

], and

TTR as the parameters. For the experiments, we use solar data from

Solar Radiation Lab (SRL) [44]. We assume that the solar panel is

10cm2
; hence, a�er the conversion Ratemax = 12.

According to the generated (m,k) constraints in our experiments

(see Subsection 7.1), д(uh ) = ‖F × uh +O f f set ‖−∞ where F is a

diagonal matrix of size n × n includes the number of di�erent

performance levels for each task and O f f set is a vector of size n;

the ith element of this vector, corresponds to task τi is L − F (i, i).
Figure 3 shows the simulation results of the proposed energy-

resilience method over a time period of 5 days (from 1 to 5 July 2017).

�e initial available energy in the storage unit is equal to Emin .

�e prediction time horizon in this experiment is 144 hyperperiod

and the length of each hyperperiod is 10 minutes, i.e. we simply

assume that the prediction time horizon is one day. Each point of

the �gure shows the mean and variance of the resilience/execution

time over 50 periodic task set.

Because of the huge computational complexity of (17), we done

some experiments on the 250 small task sets (n = 3) and prediction

time horizon (H = 10). �e experiments show that the mean and

variance of the approximation factor is 1.21 and 0.11, respectively.

As can be seen, the time complexity of the proposed method is

very low and it makes a good approximation of the optimal solu-

tions. Hence, it is an e�ective method to �nd the performance level

of each hyperperiod in order to maximizing the value of resilience.

8 CONCLUSIONS
In this paper, we target the energy-resilience of WHRT systems in

which the amount of harvested energy from a renewable energy

source such as solar, changes due to the environmental conditions.

We assume that the energy changes occur only at hyperperiod

boundaries and there is a lower bound on the predicted charging

rates.

We propose some conditions to have a partial order over (m,k)

constraints in WHRT systems. Based on that, we de�ne the safety

property of the system. We prove that E-pa�ern guarantees ei-

ther performance or energy safety when the resilient scheduling

algorithm changes the performance of the system. �en, we pro-

pose an online schedulability test for PFPASAP while considering

the available energy at the start of each hyperperiod and (m,k)

constraints. �is schedulability test can be used by the proposed

energy-resilient algorithm during runtime.

Further, we propose a measure of resilience that considers the

survivability and the system trends to back to its best performance.

Finally, we propose an energy-resilient scheduling algorithm uti-

lized by MPC approach which with the approximation factor of

less than or equal to 2 can provides a suboptimal solution. �e ex-

periments show the e�ectiveness of the proposed energy-resilient

method.

A PROOF OF PROPOSITION 1
All constraints of the �rst condition have hard deadlines. �us, they

are equal. According to the de�nition of (mil ,kil )-�rm model [23],

Conditions 2 and 3 are obviously valid. In Condition 4, suppose

we have a sequence S of kil jobs of task τi that is (mil ,kil )-�rm

and A is the �rst and B is the last job. Also, suppose that S1 is a

subsequence of consecutive jobs of S from 1 to kil − 1 and S2 is

one from 2 to kil (see Figure 4). A and B have four states related

to meet or miss their deadlines. As shown in Table 1, in all of

these states, S1 and S2 are (mil − 1,kil − 1)-�rm deadline. Note

that, if a sequence of consecutive jobs is (mil ,kil − 1)-�rm deadline,

according to Condition 2, it is also (mil − 1,kil − 1)-�rm deadline.

Table 1: All possible states of A and B

A B
Number of

successful

jobs in C
S1 S2

meet meet mil − 2 (mil − 1,kil − 1) (mil − 1,kil − 1)

meet miss mil − 1 (mil ,kil − 1) (mil − 1,kil − 1)

miss meet mil − 1 (mil − 1,kil − 1) (mil ,kil − 1)

miss miss mil (mil ,kil − 1) (mil ,kil − 1)

In Condition 5, we need to prove that (mil ,kil ) ≥ (cmil , ckil ),
where c ∈ Z+

. If task τi is (mil ,kil )-�rm constraint according to

pa�ernϕ, then there aremil mandatory jobs in any non-overlapped

consecutive window of size kil , namely W1,W2, .... Now, con-

sider all non-overlapped consecutive windows of size ckil , namely

W ′
1
,W ′

2
, ..., from the start point ofW1. All of these windows have

cmil mandatory jobs according to pa�ern ϕ (note that,W1,W2, ...

are constructed according to pa�ern ϕ). Consequently, all sliding

windows of size ckil have cmil mandatory jobs.

�ese conditions provide the partial order constraints. To com-

plete the proof, lets consider the symmetry and transitivity of the

relations. For symmetry, we need to prove that if (mil ,kil ) ≥
(mil ′ ,kil ′ ) and (mil ′ ,kil ′ ) ≥ (mil ,kil ) then (mil ,kil ) = (mil ′ ,kil ′ ).
�ese relations can be held under Condition 1, and Condition 5

when c = 1. In Condition 1, (mil ,kil ) and (mil ′ ,kil ′ ) have hard

deadline constraints and are equal. In Condition 5, when c = 1, we

havemil = mil ′ and kil = kil ′ .
For the transitive property, we need to prove that if (mil ,kil ) ≥

(mil ′ ,kil ′ ) and (mil ′ ,kil ′ ) ≥ (mil ′′ ,kil ′′ ) then (mil ,kil ) ≥ (mil ′′ ,kil ′′ ).
For Conditions 1 to 3, according to the de�nition of (m,k)-�rm

model, the proof is immediate. For Condition 4, we can consider

a scenario similar to Figure 4, with three subsequences of consec-

utive jobs S1, S2, and S3, as shown in Figure 5. A, A′, B, and B′



Resilient Scheduling of Energy-Variable Weakly-Hard Real-Time Systems RTNS 2017, October 2017, Grenoble, France

0.2 0.4 0.6 0.8 1.0

Utilization

-0.2

0

0.2

0.4

0.6

0.8

E
rr

o
r

n = 5

Online-ST

Offline-ST

0.2 0.4 0.6 0.8 1.0

Utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

E
rr

o
r

n = 10

Online-ST

Offline-ST

(b)(a)

Figure 2: Comparing the mean and variance of the Online-ST and O�line-ST error, a) n = 5, b) n = 10.

Figure 3: �e mean and variance of the resilience and the
execution time of the proposed method, a) n = 5, b) n = 10, c)
n = 20

have 16 states related to meet or miss their deadlines. In all of

these states, S1, S2, and S3 are (mil − 2,kil − 2), (mil − 1,kil − 2), or

(mil ,kil − 2). According to Condition 2 and its transitive property,

(mil−1,kil−2) ≥ (mil−2,kil−2) and (mil ,kil−2) ≥ (mil−2,kil−2).

In Condition 5, suppose that (mil ,kil ) ≥ (cmil , ckil ) and (cmil , ckil ) ≥
(c ′(cmil ), c

′
(ckil )), for all c, c ′ ∈ Z+

. As cc ′ ∈ Z+
, then (mil ,kil ) ≥

(cc ′mil , cc
′kil ) as well.

B RELAXATION OF ONLINE-ST
�is appendix simpli�es the inequalities (13) and (14).

Let’s start with (13).

Figure 4: A (m,k)-�rm task is aslo a (m−1,k−1)-�rmdeadline.

Figure 5: A (m,k)-�rm task is aslo a (m−2,k−2)-�rmdeadline.

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
ej =

i−1∑
j=1

⌈
πi
πj ×

mjl
kjl

⌉
ej + ei

≤
i−1∑
j=1

(
πi
πj ×

mjl
kjl

+ 1)ej+ ei =

i−1∑
j=1

(
πi
πj ×

mjl
kjl

)ej+
i∑
j=1

ei

(21)

As a result, if

i−1∑
j=1

(
πi
πj ×

mjl
kjl

)ej+
i∑
j=1

ei ≤ πi then

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
ej ≤

πi .
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Similar to (21), for (14) we have:

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × (pow j − Rate)

+
+

(
Π

πi − 1)(

i∑
j=1

⌈⌈
πi
πj

⌉
mjl
kjl

⌉
× ej × pow j − Rate × πi )

+

≤
i−1∑
j=1

(
πi
πj ×

mjl
kjl

) × ej × (pow j − Rate)
+

+

i∑
j=1

ej × (pow j − Rate)
+

+(
Π

πi − 1)(

i−1∑
j=1

(
πi
πj ×

mjl
kjl

) × ej × pow j

+

i∑
j=1

ej × pow j − Rate × πi )
+

(22)

�e above equalities leads to have the schedulablity conditions

as shown in (18).
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