
A System Architecture for Evolving Protocol Stacks
(Invited Paper)

Ariane Keller, Theus Hossmann, Martin May

Computer Engineering and Networks Laboratory

ETH Zurich, Switzerland

Email: firstname.lastname@tik.ee.ethz.ch

Ghazi Bouabene, Christophe Jelger, Christian Tschudin

Computer Science Department

University of Basel, Switzerland

Email: firstname.lastname@unibas.ch

Abstract—A majority of network architectures aim at solving
specific shortcomings of the original Internet architecture. While
providing solutions for the particular problems, they often lack
in flexibility and do not provide general concepts for future
networking requirements.
In contrast, we introduce a network architecture that aims

to be versatile enough to serve as a foundation for the future
Internet. The main pillars of our architecture are communication
pivots called information dispatch points (IDPs) which embed
the concept of modularity at all levels of the architecture. IDPs
completely decouple functional entities by means of indirection
thus enabling evolving protocol stacks. Our architecture also
provides a consistent Application Programming Interface (API)
to access node-local or network-wide functionality.
In addition to the description of this architecture, we report

about a working prototype of the architecture and we give
examples of its application.

I. INTRODUCTION

The success of the existing Internet architecture is a testi-

mony of the wise design decisions [1] of the early days of the

Internet. Indeed, the closely specified protocol suite and the

simple basic mechanisms paved the way of this success.

However, for today’s and future challenges, this architecture

may not suffice: With the continuous growth of the number of

networking devices and their increased diversity in function-

ality, the role and the properties of the networking elements

become challenged.

Therefore, several research projects have tried to develop

a network architecture that is armed for the future. Some

of these projects focus on virtualization methods to separate

router functionality or whole networks [2], [3]. Others discuss

on a higher abstraction level how networks beyond IP can be

built [4], [5], [6]. These papers discuss issues like naming and

addressing or network pluralism in general.

It is foreseeable that future networks will be heterogeneous

(in devices and functionality) and will require to be able to

adapt dynamically in order to provide a protocol stack that is

suitable for the actual network environment. A major difficulty

in providing such a new architecture is the design of a generic

mechanism that flexibly connects the different networking

elements. Flexibility is typically achieved in computer science

by adding a layer of indirection. In [7], the authors illustrate

how indirection can be used in an elegant and clean distributed

network architecture. Indirection as such is a well understood

principle. For example, file descriptors in Unix systems are

used as an abstraction mechanism for nearly everything that

is able to read and write data. Sockets, device files, and the

console are all treated the same way as physical files. This

allows an application to send data to a file descriptor without

having to worry whether the data is actually sent to a file or

to the console. Such indirection even allows to redirect all

data received by the console to a physical file in a transparent

manner.

However, the gained flexibility comes at a price. The system

gets more complex and the performance may be reduced due

to some extra effort needed by the indirection. Therefore for

each system a trade-off between flexibility on the one hand

and performance on the other hand has to be considered.

Inspired by the flexibility provided by indirection, we have

built a network architecture based on this principle: the ANA

framework.1 An initial discussion of ANA can be found in [8].

In ANA, we introduce indirection on every hierarchical level.

Our architecture divides all network functionality into blocks,

which are addressed by node-local identifiers. Instead of one

function talking directly to another function, the first function

sends its data to an identifier (called Information Dispatch

Point or IDP) that is bound to the second function. The IDP

simply has to forward the data to the second function.

Our architecture leads to a protocol stack that is ruled by

IDPs. Each function, be it on the local or on a remote node, is

accessed with the help of a local IDP. This layer of indirection

allows changing the flow of data within a node at runtime and

transparent to the sending block, thus the protocol stack can

be optimized for the current network environment.

We have developed a generic API (Application Program-

ming Interface) that enables communication between any pair

of networking functionality. The main benefit of this API is

that the same functions can be used for node-local as well as

for remote communication setup.

Following the Internet tradition where networking software

matures through implementation, we have implemented a

prototype of our architecture. The knowledge gained during

each implementation round has been used to improve the ar-

chitecture and the API. As a result, our framework has matured

on both, academic as well as implementation challenges.

A. Contributions

The network architecture we present herein is a framework

for future networks. It differs in multiple aspects from existing

1The ANA project website: http://www.ana-project.org.



work as it is able to deal with the heterogeneity and evolution

of networks as well as with the integration of new mechanisms

and protocols at runtime.

Specifically, our architecture integrates the following new

elements: (i) the indirection approach is applied for node

local function decomposition; (ii) the system and network

design allows for changing network stacks on the fly; (iii) our

architecture does not imply the “one size fits all” approach.

The system is conceived such that multiple stacks may coexist

and allow for heterogeneous settings with network clouds with

individual address and naming structures, packet formats, or

routing schemes.2 Finally, (iv) we provide a generic API to

the networking mechanisms. This API provides flexibility and

allows for evolution of the network without imposing any

restriction to the internal network operation.

Due to (i) and (ii), one is able to integrate new functionality

like for example monitoring or packet capturing in the node

without service interruption. Also, the networking stack can

be reconfigured transparently to better fit the networking

condition. A typical example would be the use of additional

functionality like encryption or authentication when a node

enters an insecure network.

II. CORE NETWORKING MACHINERY

The fundamental concept around which the architecture

is built, is the information dispatch point (IDP). IDPs are

inspired by the work on network pointers [9] and are also

somehow similar to file descriptors and sockets in Unix

systems. IDPs are typically bound to functional blocks (FB).

Functional blocks are information processing units that imple-

ment data transmission functionality (for example sending and

receiving of IP packets) or some additional functionality as for

example traffic monitoring. Generally, functional blocks can

be used to implement network services like those described in

[10]. IDPs also abstract information channels (IC) via which

remote nodes and protocols are reached. However, unlike file

descriptors and sockets, the binding of an IDP is dynamic and

may change over time as the “network stack” is re-configured.

From an implementation standpoint, an IDP is identified by a

randomly generated label.

In order to keep track of all available functional blocks

and IDPs, there is a central entity on each node. This entity

has two tables: one that describes all functional blocks and a

second that stores the mappings between IDPs and functional

blocks. Those tables are used to forward messages between

the individual FB.

A. Basic IDP operation

The objective of IDPs is actually two-fold: first, they

provide a generic communication means between the various

functional blocks running inside a node and, second, they

provide the flexibility to re-organize the communication paths.

Examples of such communication paths are illustrated in

Fig. 1. In Fig. 1 (a), a functional block (FB1) sends data to

2For the interaction of these network clowds, an appropriate gateway
functionality has to be provided.

an IDP 'a' which is bound to another functional block (FB2).

In Fig. 1 (b), the IDP is rebound to the functional block FB3

and in 1 (c), the IDP is bound to the information channel IC1.

Fig. 1. IDP binding: IDP 'a' is subsequently bound to FB2, FB3 and IC1.

The important property of this re-binding operation is that it

is not disruptive: in this example, any FB which was sending

packets to IDP 'a' (e.g., FB1) continues to send to IDP 'a'

without even being aware of the re-binding operation.

The IDP bindings are stored in a forwarding table within the

node where each IDP is identified by a node-local label. This

table, called the information dispatch table (IDT), is illustrated

by Fig. 2. As shown in the figure, the IDT stores the binding

between IDP values and the entity (FB or IC) to which they

are bound. When a packet is sent to some IDP, it is forwarded

to the FB or IC to which the IDP is currently bound. It is

then up to the entity receiving a packet to decide what to do

next with the packet: consume the data, add a header and re-

forward the packet to the next IDP, drop the packet, etc. For

example, in Fig. 2, FB1 either forwards data to the IDP 'b' or

directly to IDP 'c' (from which data is sent to some network

interface for example). Note that a FB/IC may have multiple

IDPs attached to it, as shown in the figure where IDPs 'y' and

'b' are both attached to FB2.

Fig. 2. Forwarding inside a node. The information dispatch table holds the
bindings of the IDPs.

As previously stated, the binding of an IDP is not fixed and

may be changed dynamically. For example, between Figures

2 and 3, the IDP 'a' was re-bound to functional block FB3. In

order to perform a re-binding, only the entry of the particular

IDP has to be changed in the information dispatch table.

Note that the re-binding has been fully “transparent” to the

application, which continues to send data to IDP 'a'.

For packet forwarding, IDPs permit to implement forward-

ing tables which are fully decoupled from addresses and



Fig. 3. IDP re-binding inside a node. Instead of sending data directly to
FB1, data is send to FB3 and then forwarded to IDP 'z' bound to FB1

names: i.e., the next hop FBs (inside a node) and (remote)

nodes are always identified by IDPs. This hence allows to add

and use new networking technologies and protocols as long

as they “export” their communication services as IDPs.

B. Advanced use of IDPs

The concept of IDPs is in itself very powerful and enables

the development for multiple dynamic network element con-

figurations. We further developed this concept by adding some

sort of access control and scope to IDPs.

The major drivers for this add-on were: (i) functional blocks

internally bind each IDP to a particular operation to be carried

out and this means that IDP redirection must preserve IDP

values; (ii) while performing an IDP redirection, one may not

always wish to redirect all the packets sent to a particular IDP.

For example, some networking stacks may wish to redirect

only certain network traffic to an encryption FB while other

packet flows are forwarded unencrypted. To support such

functionality, we introduce two types of IDPs:

• Public IDPs: Public IDPs receive data from any func-

tional block. They are identified by the subscript character

* (such as e.g., a∗).

• Private IDPs: Private IDPs only receive data from a

particular FB or IC. This FB or IC is indicated as a

subscript suffix (such as e.g., aFB1).

Fig. 4 illustrates how redirection is actually performed such

that the functional block FB2 continues to receive data via the

IDP 'a'. All data sent to the public IDP 'a∗' is now received

by FB1 and then forwarded to FB2. At that point, the IDT

has two entries <a∗ → FB1 > and <aFB1 → FB2 > and

dispatches packets to the appropriate destination according to

the sender FB.

Fig. 4. Re-binding with public and private IDPs.

The use of public and private IDPs for performing selective

redirection is illustrated by Fig. 5. In Fig. 5 (a), both functional

blocks FB1 and FB3 send data to functional block FB2.

In Fig. 5 (b), packets sent by the functional block FB1 are

redirected to FB4 while the data sent by FB3 continues to

be sent to FB2. The header of the packets sent by FB1 still

contains the same IDP value 'c'. There is no way to identify

from its numerical value whether an IDP is public or private.

However the IDT maintains two entries <c∗ → FB2 > and

<cFB1 → FB4 > and dispatches packets to the appropriate

destination according to the sender FB.

Fig. 5. Restricted IDP re-binding.

C. Compartments

To enable communication between hosts and routers imple-

menting and using the same set of functional blocks, we also

introduce the concept of compartments. A compartment is a

set of FBs, IDPs and ICs with some commonly agreed set

of communication principles, protocols and policies. Typical

network compartments are an Ethernet segment, the public

IPv4 Internet, a private IPv4 subnet, the DNS, peer-to-peer

systems like Skype, or distributed web caching networks like

Akamai. Note that the concept of compartment is different

to the notion of layer, in the sense that the compartment

concept captures the idea of a network instance regardless of

the level(s) at which it operates in the network architecture.

In addition to network compartments, our architecture intro-

duces a special compartment called the node compartment. We

indeed consider each networking host to be itself a network

composed by the functional blocks running on the host. The

node compartment thus encompasses all FBs and IDPs within

a node. Throughout this paper network compartments are

depicted as dashed blue lines and the node compartment as

a solid blue line.

III. COMMUNICATION API

Network compartments are free to internally use whatever

addressing, naming, routing, networking mechanisms, proto-

cols, packet formats, etc., they want. The objective is to enable

variability and evolution by not imposing any restriction on the

internal network operation of compartments. However, to sup-

port all possible and unforeseen interactions, all compartments

must support a generic “compartment API” which provides

the “glue” that permits to build complex network stacks and

packet processing paths.

A. Genericity Requirements

With respect to application developers, a key requirement

is that the API primitives support generic arguments such

that applications can use the same programming primitives



to communicate with any compartment. In other words, the

objective is that developers write “network-agnostic” appli-

cations that do not need to be modified to support newly

developed network compartments. For example, one could

write a “content browser” (similar to today’s web browsers)

that takes any opaque string as user input. The browser would

then find the right network compartment for handling this

address or name and it would require from it a communication

channel to the destination. Eventually the browser would send

the data to the target FB at the destination without, at any

time, having to understand the syntax of the input string.

B. User Provider Model

We borrow a fundamental networking concept from the

Open Systems Interconnections (OSI) [11] architecture which

introduces the notions of user and provider layers. Basically,

in OSI a provider layer N provides network services to all the

N+1 layers of the architecture. For example, a network layer

offers a connectivity service to all the transport layers.

We embed this fundamental networking concept into the

architecture via the compartment API. Basically, a user func-

tional block requests services from a provider layer via the

compartment API: because it is generic, the user-provider

relationship between compartments is not fixed and network

compartments are potentially combined in any arbitrary way.

Note however, that we do not mandate OSI layers or a static

layering as in OSI.

C. The compartment API

As a starting point towards generality, the compartment API

currently offers five fundamental primitives detailed below

with some simplified C-style function prototypes. Similar to

Plutarch [6], the API follows a publish/resolve communica-

tion model in which a service is published within a certain

compartment’s context. A published service then is resolved

and the obtained IDP can be used to send data to the resolved

service. Beside resolution, one also may lookup a service to

obtain further reachability information but not instantiate an

information channel to the service.

• IDPp publish(IDPc, CONTEXT, SERVICE)

• int unpublish(IDPc, IDP published, SERVICE)

• IDPr resolve(IDPc, CONTEXT, SERVICE)

• void* lookup(IDPc, CONTEXT, SERVICE)

• int send(IDPr, DATA)

In the primitives, IDPc identifies the compartment handling

the request. The SERVICE argument is typically what is pub-

lished or looked up, while the CONTEXT argument defines

some scope inside the compartment. Note that the term service

is used throughout this paper to refer to any kind of resource

that is resolved. This, for example, includes addresses, names,

network nodes, protocol entities, files, video streams, printing

services, etc.

D. Examples

To further describe and illustrate the compartment API

we present in the next sections some simple examples of

compartment communications and describe how each scenario

would be implemented with the basic primitives of the API.

1) Node Local Communication Setup: Since each node is

organized as a compartment, the communications inside a

node are also setup via the compartment API. In particular,

functional blocks publish IDPs and resolve services inside the

node compartment with the same primitives used to commu-

nicate with network compartments. As a basic functionality,

this allows each functional block to discover the services and

network compartments available inside the node in which it is

running.

For example, a functional block implementing the Ethernet

protocol publishes itself inside the node compartment with

the following primitive:

y ← publish(NODE_IDP, ".", "ETHERNET")

Generally, NODE IDP is provided by the node

compartment. In this example CONTEXT is defined as

"." which restricts all operations to the local node. Upon

success, the publish primitive returns the IDP 'y' (randomly

generated) which is now bound to the Ethernet functional

block. Now, a second functional block which wants to send

data through an Ethernet interface will be able to resolve this

IDP with the following request:

y ← resolve(NODE_IDP, ".", "ETHERNET")

This functional block (e.g., an IP stack), now uses the IDP

'y' for communication with the Ethernet functional block.

A possible communication between an Ethernet and an IP

functional block is shown in the next two examples.

Fig. 6. The publish primitive.

2) Publishing an IP Address: In Fig. 6, the functional

block implementing the IP stack (IP-FB) publishes its IP

address inside the Ethernet compartment via the Ethernet

functional block ETH-FB. This means that the IP-FB becomes

reachable via the Ethernet compartment with the service

name "10.1.2.3". This publication is performed by the

IP-FB by calling the primitive

z ← publish(y, "*", "10.1.2.3")

which, upon success, returns the IDP 'z'. Note that

the generic CONTEXT "*" specifies the largest possible



scope as interpreted by the compartment: for the Ethernet

compartment this typically means all attached hosts on the

segment and maps (inside the compartment) into the broadcast

address FF:FF:FF:FF:FF:FF. For an IP compartment,

the CONTEXT "*" would typically be interpreted as being

the local subnet address (e.g., "10.1.2.255" for a class-C

subnet). It is also possible to specify a particular CONTEXT:

for example, with the Ethernet compartment, a multicast

service may be published by specifying the Ethernet multicast

address to be used (as shown on the following example):

m ← publish(y, "01:00:5e:00:00:09", "224.0.0.9")

3) Resolving an IP Address: Fig. 7 illustrates the

resolve primitive. In this follow-up example, an “IP-stack”

functional block inside Node N asks the Ethernet compartment

(via ETH-FB) to resolve the service "10.1.2.3" in the

"*" CONTEXT (i.e., the entire Ethernet segment). This is

performed by calling the primitive

s ← resolve(e, "*", "10.1.2.3")

which, upon success, returns the IDP 's' which is used

to send data to the resolved service. Inside Node N, the

ETH-FB maintains some state that permits to transfer any

data sent to the IDP 's' to the IDP 'z' in Node M. For

Ethernet, this information includes the MAC address of the

destination node plus a dynamically allocated token value used

for demultiplexing packets at the destination node.

Fig. 7. The resolve primitive.

How the real resolution is performed is left to the compart-

ment. In the case of the Ethernet compartment, a resolution

request triggers the sending of a broadcast message (sent to

FF:FF:FF:FF:FF:FF) containing the service name (here

"10.1.2.3") being looked up. Any Ethernet FB that has

published the service in the "*" CONTEXT replies to the

request with a message containing the information needed

to reach the service via the corresponding compartment. For

the Ethernet compartment this request-reply phase is actually

similar to today’s operation of ARP (Address Resolution

Protocol) but with dynamically assigned “type” values for the

Ethernet header.

The lookup primitive is similar to the resolve primitive

except that it does not instantiate an information channel to

the service but solely returns reachability information about

the service. In the case of the Ethernet compartment, a

lookup may simply return a boolean answer indicating whether

the service is reachable (and can be resolved) or not. The

lookup primitive is actually useful for compartments that

solely maintain mappings between multiple namespaces but do

not forward data: this is for example the case of the Domain

Name System which translates DNS names into IP addresses.

IV. USE CASES

A. Dynamic Reconfiguration

The rebinding property of IDPs is used to dynamically re-

configure the data path within a node. The following scenarios

show the usefulness of this functionality.

1) Monitoring: Today, observing the network environment

is of great interest, for example for Intrusion Detection Sys-

tems (IDS), traffic monitoring, etc. With the proposed architec-

ture, the system logic may insert some monitoring functional

block(s) at any position in any data path without disrupting

the data flow. Adding an extra FB in the data path indeed

only involves some basic IDP re-binding as was illustrated in

Figures 2 and 3. If we assume that the added component FB3

performs some monitoring operation, this examples shows how

easy it is to insert monitoring probes in our architecture.

2) Network Agnostic Applications: Today’s applications

need to explicitly specify the protocols they are using, since

they have to specify the socket type and address family. This

complicates the introduction of new network protocols. How-

ever with the architecture proposed in this paper, applications

do not have to understand anything about the underlaying

network compartment. As a proof of concept we have written

a chat application which runs on top of any network protocol

(e.g., Ethernet, IP), without the need to change anything in the

source code.

3) TCP over ETH: The IP layer is not needed in all network

scenarios. In small scale networks, as Personal Area Networks

or Sensor Networks, the IP layer is not mandatory or even

procudes unnecessary overhead. With legacy systems, it is not

possible to bypass the IP layer “on-demand”. With the help

of the IDP concept, the communication path within a node is

setup or re-configured such that it is optimized for any given

networking scenario. With our architecture, it is possible to

dynamically reconfigure the network stack and use transport

layer protocols directly over Ethernet.

4) Others: There are many other scenarios in which the

dynamic reconfiguration of IDPs is useful.

• Different functional blocks participate in the protocol

stack depending on the current network environment.

For example, upon switching from a wired network to

a wireless network an encryption functional block may

by added on the fly in all data paths.

• Upon congestion at the link layer, all the data could be

compressed before it is actually sent over the link.

• Functional blocks with the same functionality are ex-

changed on the fly which allows for a system update at

run time. For example, if one has updated a functional

block that e.g., computes a checksum, the IDP that is



used to communicate with the original FB is bound to

the new FB.

An additional use case is described in [12]. There, the authors

describe how a publish subscribe system is implemented in

the ANA framework.

B. Security Mechanisms

Beside the benefit of dynamic rebinding, IDPs are also used

to enforce some security mechanisms.

1) Access Control: To enforce access control, a functional

block may provide two kinds of IDPs. A public IDP that

is used as an initial access point, to verify the credentials

provided by the client functional blocks. After successful

verification of the credentials a new private IDP is generated.

This IDP may now only be used from the functional block

that has successfully identified itself.

2) Default Off Policy: The concept of IDPs implement a

default off policy [13]. For example, in the standard TCP/IP

protocol stack, the number 6 in the “next protocol field” of the

IP header, always refers to TCP. This static binding eases the

flooding of the network with broadcast packets that have to be

treated in the application layer of each node. With the use of

IDPs this is not possible, since the IDPs differ from node to

node. Therefore, before starting to send data, an information

channel has always to be setup explicitly.

V. DISCUSSION

One may argue that with every layer of indirection the

system complexity increases and the performance gets worse.

Indeed, there is an overhead introduced by the IDPs and during

the communication setup. However the ultimate goal of our

work is to provide a flexible network architecture which can be

used to build an autonomic network architecture. We believe

that this is not possible with the current “monolithic and

statically bound” networking architectures and therefore the

overhead introduced with the IDPs is justifiable. Additionally,

our architecture is able to compose a protocol stack which is

optimal for a given communication. For example, one could

decide to entirely skip the IP protocol for LAN communi-

cations and run transport protocols directly over Ethernet.

This means that we omit unnecessary “layers” and therefore

increase the overall system performance. But, at the current

project status, we are not able to present an evaluation which

compares the flexibility gains with the performance cost.

Another interesting aspect of the architecture is to determine

the conditions under which a redirect is as simple as described

in this paper. We see difficulties in the transition of state: If a

functional block should be exchanged with another functional

block the internal state has to be transferred. Since this state

is different for each functional block there is no generic way

to transfer state between two functional blocks. However, we

note that state migration is not a problem specific to our archi-

tecture and we plan to re-use mechanisms developed for other

architectures to (at least partially) resolve that problem. For

example, migration mechanisms related to TCP are presented

in [14] or [15].

A third aspect that needs further investigation is related

to the lifetime of IDPs. Currently there are two types of

IDPs: permanent IDPs and volatile IDPs. Permanent IDPs

are registered as long as a given functional block is loaded.

Volatile IDPs disappear when they are not used anymore.

All IDPs bound to an IC should be volatile to allow easy

garbage collection when an IC is not used anymore or when

the destination node has crashed. Whereas IDPs that belong

to a functional block published in the node compartment

are permanent and they will be available as long as the

corresponding functional block is loaded.

VI. RELATED WORK

A. Configurable Protocol Stacks

The idea of composing a protocol stack dedicated for a

specific use is not new. It dates back to the x-Kernel [16]

which defines an explicit architecture for constructing and

composing network protocols or even to the UNIX System V

STREAMS [17] implementation which allows data processing

modules to be connected. A more recent project is the Click

Modular Router [18] in which the networking functionality

is divided into small elements each of which performs a

simple computation such as decrementing a TTL field or

queuing a packet. However none of these architectures are

designed to change the protocol stack at run time. Several other

projects are targeted exactly on the dynamic configuration of

protocol stacks. In the Horus system [19], protocol layers

can be stacked on top of each other at run time or the

ASH [20] system even allows to generate code on-the-fly

thereby allowing optimal memory handling. Finally, Protocol

Boosters [21] allow to enhance a protocol stack on the fly

with functions such as encryption or compression. In contrast

to our architecture Protocol Boosters depend on an existing

protocol stack to which they add additional networking func-

tions dynamically.

Inspired by the flexibility of these dynamic protocol stacks

we have built our own system. We take this flexibility to

the next level by introducing network compartments. Each

of these compartments may have its own protocol system

thereby allowing different networking architectures to coexist.

This goes clearly beyond the legacy TCP/IP protocol stack for

which the other projects are targeted.

B. Network Architectures

In recent years the interest of researchers in network ar-

chitectures has increased. As a result there are some projects

which design a clean slate approach for the Internet. Most of

those projects belong either to the US FIND [22] initiative

or to the EU FIRE [23] initiative. Our architecture is one of

these approaches which try to build a network which is better

armed for the future. Our architecture is inspired by several

other network architectures. Similar to Plutarch [6] we have

explicitly designed our architecture to allow a heterogeneous

network environment. In Plutarch the network is divided into

contexts, within one context the network is assumed to be

homogeneous. This is similar to the notion of compartments



in ANA. However, Plutarch only specifies a straw man API

whereas we have a running implementation. Another work

that influenced our architecture are Network Pointers [9].

A network pointer is a packet processing function that is

addressed with a pointer value. This is similar to our notion

of information dispatch points, however network pointers are

exchanged between different nodes, whereas IDPs are only a

node local concept.

VII. CONCLUSIONS

In this paper, we have presented the ANA framework that

is based on the principle of indirection. We have successively

improved our architecture during several implementation and

design cycles, and continue to populate it with more function-

ality.

We have contributed multiple new elements to the existing

network architectures. We have provided abstractions and

concepts that describe the interactions between the network

functions within one node or between nodes. Specifically, we

have introduced the concept of information dispatch points that

enables the decoupling of sending and receiving functionality.

This in turn allows new communication principles to arise. In

contrast to existing systems, with our framework it is possible

to rearrange the protocol stack on a node at run time.

The distinction between public and private IDPs offers

an elegant mean to implement access control mechanisms

limiting the availability of network functions or protocols. This

functionality is an important cornerstone for future security

mechanisms.

With the definition of the communication API, we have

provided a generic interface for the interaction between node

internal functionality as well as for the communication be-

tween network nodes. The objective of this API is to enable

flexibility without imposing restrictions on the implementation

of any functionality.

To assess the suitability of the API, it is best to apply it

to existing protocols. In our ongoing work, we have already

demonstrated that the API captures the interactions of existing

protocols, such as for example Ethernet, IP, or DNS.

As a next step, we plan to add more formalism to the work

described in this paper. A possible future direction is to link

the architectural work and its abstractions with the ABC work

described in [24].

We believe that the advantages of the proposed architecture

are also best demonstrated by further extending the current

implementation. Ultimately, the users of the framework will

adjudicate upon its success.

VIII. ACKNOWLEDGMENT

This work was performed within the ANA (Autonomic

Network Architecture) project [25] which is funded by the

European Union Information Society Technologies Framework

Programme 6. The aim of the ANA project is to provide a

framework to flexibly host, interconnect, and federate multiple

heterogeneous networks in an autonomic way, i.e., without

requiring active human intervention.

REFERENCES

[1] D. Clark, “The design philosophy of the darpa internet protocols,” in
SIGCOMM ’88: Symposium proceedings on Communications architec-

tures and protocols. New York, NY, USA: ACM, 1988, pp. 106–114.
[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford,
“In vini veritas: realistic and controlled network experimentation,” in
Proceedings of SIGCOMM 2006. New York, NY, USA: ACM, 2006,
pp. 3–14.

[3] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov,
“Designing extensible ip router software,” in Proceedings of NSDI 2005.
Berkeley, CA, USA: USENIX Association, 2005, pp. 189–202.

[4] Z. Turanyi, A. Valko, and A. Campbell, “4+4: An Architecture for
Evolving the Internet Address Space Back Toward Transparency,” Com-
puter Communication Review, vol. 33, no. 5, pp. 43–54, October 2003.

[5] D. Clark, R. Braden, A. Falk, and V. Pingali, “FARA: Reorganizing the
Addressing Architecture,” in Proceedings of ACM SIGCOMM FDNA
Workshop, August 2003, Karlsruhe, Germany.

[6] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield, “Plutarch:
an argument for network pluralism,” in Proceedings of ACM SIGCOMM
FDNA Workshop, August 2003, Karlsruhe, Germany.

[7] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 73–86, 2002.

[8] C. Jelger, C. Tschudin, S. Schmid, and G. Leduc, “Basic Abstractions
for an Autonomic Network Architecture,” in Proceedings of AOC’07,
June 2007, Helsinki, Finland.

[9] C. Tschudin and R. Gold, “Network Pointers,” in Proceedings of the
ACM HotNets-I Workshop, October 2002, Princeton, NJ, USA.

[10] S. Ganapathy and T. Wolf, “Design of a network service architecture,”
in Proceedings of ICCCN ’07, Honolulu, HI, Aug. 2007.

[11] H. Zimmermann, “OSI Reference Model - The ISO Model of Ar-
chitecture for Open Systems Interconnection,” IEEE Transactions on
Communications, vol. 28, no. 4, pp. 425–432, April 1980.

[12] T. Hossmann, A. Keller, M. May, and S. Dudler, “Implementing the
future internet: A case study of pub/sub in ANA,” in Proceedings of
CFI ’08, Seoul, Korea, 2008.

[13] H. Ballani and Y. Chawathe and S. Ratnasamy and T. Roscoe and
S. Shenker, “Off by Default!” in Proceedings of the ACM HotNets-IV
Workshop), November 2005.

[14] F. Sultan, K. Srinivasan, and L. Iftode, “Transport layer support for
highly-available network services,” in Proceedings of HOTOS ’01.
Extended version: Technical Report DCS-TR-429, Rutgers University.
Washington, DC, USA: IEEE Computer Society, 2001, p. 182.

[15] S. M. ElRakabawy, A. Klemm, and C. Lindemann, “Gateway adaptive
pacing for tcp across multihop wireless networks and the internet,” in
Proceedings of MSWiM ’06. New York, USA: ACM, 2006, p. 173.

[16] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An architecture
for implementing network protocols,” IEEE Trans. Softw. Eng., vol. 17,
no. 1, pp. 64–76, 1991.

[17] D. M. Ritchie, “A stream input-output system,” UNIX Vol. II: research
system (10th ed.), pp. 503–511, 1990.

[18] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The click
modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000.

[19] R. van Renesse, K. P. Birman, R. Friedman, M. Hayden, and D. A.
Karr, “A framework for protocol composition in horus,” in PODC ’95:
Proceedings of the fourteenth annual ACM symposium on PODC. New
York, NY, USA: ACM, 1995, pp. 80–89.

[20] D. A. Wallach, D. R. Engler, and M. F. Kaashoek, “Ashs: Application-
specific handlers for high-performance messaging,” SIGCOMM Comput.
Commun. Rev., vol. 26, no. 4, pp. 40–52, 1996.

[21] D. Feldmeier, A. McAuley, J. Smith, D. Bakin, W. Marcus, and
T. Raleigh, “Protocol boosters,” Special Issue on Protocol Architectures
for 21st Century Applications, vol. 16, no. 3, pp. 437–444, 1998.

[22] “FIND – Future Internet Design (FIND) - US National Science Foun-
dation,” at http://www.nsf.gov/pubs/2006/nsf06516/nsf06516.htm.

[23] “Future Internet Research and Experimentation (FIRE) initiative - Eu-
ropean Commission,” at http://cordis.europa.eu/ist/fet/comms-fire.htm.

[24] M. Karsten, S. Keshav, S. Prasad, and M. Beg, “An axiomatic basis for
communication,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp.
217–228, 2007.

[25] “Autonomic Network Architecture - EU Project (2006-2009),”
http://www.ana-project.org.


