
Derivation of access request arrival curves for
dedicated superblock sequences

TIK Report No. 347

Georgia Giannopoulou, Nikolay Stoimenov, Kai Lampka,
Andreas Schranzhofer, Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich
lastname@tik.ee.ethz.ch

Abstract

This document is intended to complement the work presented in
[4]. In particular, it provides a more elaborate documentation of the
method used for the derivation of arrival curves which bound the ac-
cess request streams of periodically executed dedicated superblocks
(Sec. 4.2.1, [4]). Additionally, it presents several abstractions that have
been applied to the timed automata-based modelling of a resource-
sharing multicore system in order to alleviate the complexity of model
checking (extension to Sec. 4.2.3, [4]).

1 Introduction

The work presented in [4] addresses the problem of analysing the worst-
case response time (WCRT) of tasks which are executed in parallel on a
multicore system and can access shared resources, such as cache memories
or interconnection buses. Access requests to those resources are synchronous
(blocking), namely execution of a task may need to stall until a resource is
available (not accessed by any other task). This interference of the tasks,
which is imposed by the utilization of shared resources, causes waiting times
that increase their WCRT and therefore need to be bounded tightly. The
latter, however, is not trivial since it depends on the arbitration policy of
the resources, which may be of any complexity.

The suggested WCRT analysis methodology, which uses timed automata
to model the resource contention scenarios and model checking techniques
to compute the tasks’ WCRT, is based on the following system assumptions:

• A system consists of several processing cores pj ∈ P , which execute inde-
pendent tasks, but can access a common resource. The task partitioning
(mapping of tasks onto cores) is predefined and no task migration is al-
lowed during runtime.

1

• The tasks that are mapped on a particular core pj are executed period-
ically according to a static schedule, which is repeated with period Wj

(processing cycle). Furthermore, the tasks are specified by a sequence of
superblocks Sj , which are non-preemptable execution units with known
lower and upper bounds on their computation time and number of re-
quired resource accesses. The superblocks in Sj are executed sequentially,
i. e., in their relative order, which is defined by the static schedule of pj ,
each superblock si+1,j is triggered upon completion of its predecessor si,j
(i ∈ [1, |Sj | − 1]).
• Each superblock in Sj is defined according to the dedicated model [8].

That is, superblocks are separated into three phases, known as acquisition
(A), execution (E), and replication (R): A superblock reads the required
data during its acquisition phase and writes back the modified/new data
in the replication phase, after computations in the execution phase have
been completed. The acquisition and replication phases, during which
resource accesses are performed sequentially, are characterized by their
minimum and maximum number of access requests. On the other hand,
the execution phase, during which no resource accesses are enabled, is
characterized by its minimum and maximum computation time.
• A shared resource can be accessed by at most one core (task) at a time.

Accesses are non preemptable and of constant duration, C. Their enabling
is organized by a resource arbiter, which may be of arbitrary complexity,
implementing for example a first come first served (FCFS), round-robin
(RR), fixed priority (FP), time division multiple access (TDMA) or even
a more complex arbitration scheme, such as the industrial FlexRay bus
protocol [1].
• The multicore hardware platform is such that computation time and com-

munication time can be decoupled (such as in the fully timing composi-
tional architecture proposed in [11]). Namely, the hardware platform is
assumed to have no timing anomalies.

For a system complying with the above assumptions, the parallel task ex-
ecution and resource sharing can be precisely modelled using the formal-
ism of timed automata [2]. Such a model of the system can, subsequently,
be analyzed with a timed model checker, as for instance Uppaal [3]. The
model checker explores exhaustively all feasible interleavings of the tasks (su-
perblocks) that can occur in runtime and therefore, all feasible interference
scenarios over the shared resources. As a result, the delays that each task
suffers while attempting to access the resources can be accurately bounded
and so can also its WCRT.

The benefit of accuracy for this WCRT analysis approach is of particular
importance, since most existing analytic approaches that address the prob-
lem of timing analysis in multicore resource-sharing systems are based on
several abstractions of the resource arbitration mechanism (esp. in case of

2

event-driven arbitration), which lead to very pessimistic WCRT estimations,
see e. g., [6, 7, 9].

On the other hand, the suggested model checking-based WCRT analysis
approach suffers from scalability issues, given that the complexity of model
checking increases exponentially with the size of the system (e. g., number
of cores on which tasks are executed in parallel). To cope with this chal-
lenge, [4] presents an extension to the initial method, which uses jointly timed
automata and the real-time calculus [10] to model the multicore resource-
sharing system. In particular, task execution and resource accessing on sev-
eral cores are modeled through arrival curves [5]. An arrival curve bounds
the maximum number of access requests that the tasks of a core can issue
in any time interval, thus providing a means to represent (abstract) the ac-
cessing pattern on each core. This information can be then expressed with
timed automata. What is important is that the number of timed automata
required to model this information is constant and not dependent on the
number of tasks (superblocks) that are executed on each core like in the
initial method. This results in a model of the system with significantly less
components (timed automata), which helps alleviate the complexity of model
checking.

In the following, Sec. 2 presents the method used to derive an arrival
curve representing the resource accessing pattern on a core, when the tasks
executing on it are specified as sequences of dedicated superblocks. This
method was introduced in [6] for the case of general superblock sequences
(superblocks in which computation and resource accesses can happen any
time) and was later refined in [4] for dedicated superblock sequences. Sec. 2
elaborates on the method presented in [4], illustrating it with examples.

Additionally, Sec. 3 presents several abstractions that have been applied
to the timed-automata based model of the studied systems, on top of the
major arrival curve abstraction. All of them are aimed to reduce the size
of the model and hence, to alleviate the complexity of model checking and
boost analysis scalability.

2 From superblocks to access request arrival curves

A set of superblocks Sj executing on processing core pj , with processing
cycle Wj , accesses a shared resource according to a pattern. This pattern is
specified by the minimum and maximum number of access requests and the
minimum and maximum computation time of each superblock in Sj . In this
section, we show how to represent such an access pattern as an arrival curve,
the latter providing an upper bound on the number of access requests that
are issued by the corresponding core in any interval of time.

The arrival curve for a core pj is derived assuming that no interference
occurs on the resource. In other words, the superblock set of pj is analyzed

3

P set of processing cores Fm,d
ordered subset of phases
from fm,j to fm+d,j

pj processing core j, pj ∈ P γym,d,k
access requests in k-th
time window of Fm,d

Wj processing cycle length on pj ∆x,y
m,d,k

length of k-th time
window of Fm,d

Sj superblock set mapped on pj g
min. gap between two con-
secutive instances of Sj

si,j
superblock i on core pj , tx,ym,d,k

tuples for k-th time
si,j ∈ Sj window of Fm,d

C resource access latency x ∈{min,max} min/max computation time
of phases in a time window

fi′,j
superblock phase i′ on pj , y ∈{min,max} min/max access requests
i′ ∈ [1, 3 · |Sj |] of phases in a time window

µ
[min|max]
i′,j

min/max accesses requests
δ(t), ν(t)

window length & access
in phase fi′,j requests of tuple t

ex
[min|max]
i′,j

min/max computation time
wj

worst-case (min) period of
in phase fi′,j access request stream on pj

Table 1: Symbols for the system model and arrival curve derivation

in isolation, as if it had exclusive access to the resource. The arrival curve
construction involves then the following steps:

1. Computation of all ordered subsets of superblock phases within two consec-
utive processing cycles: Based on the definition of the set Sj , which is an
ordered set since the superblocks are statically scheduled on pj , we com-
pute all possible ordered subsets of phases within two processing cycles.
Each phase subset yields multiple time windows during which new access
requests can be issued.

2. Computation of the time windows and the maximum number of access
requests that can be issued during them for all phase subsets: For each time
window within a phase subset, this information is expressed as a tuple of
the form (γ,∆), when γ is the maximum number of requests that can
occur in the time window of length ∆. Several time windows might have
equal lengths but different number of access requests. Eventually, among
them, only the window(s) with the highest number of access requests will
contribute to the arrival curve.

3. Construction of the arrival curve of core pj : An initial arrival curve is
derived based on the previously computed tuples. Eventually, the arrival
curve representation of pj ’s access pattern will be a periodic repetition of
this initial curve.

The three steps are discussed in more detail in the following subsections. For
a summary of the variables that are involved in the computations the reader
is referred to Table 1.

4

2.1 Computing sequences of superblock phases

Initially, we translate the superblock set Sj , of which the access pattern we
want to represent, into the sequence of its constituent phases. Given the
dedicated access model of the superblocks of Sj , that means that each su-
perblock si,j ∈ Sj can be translated into a sequence of three phases, which
are denoted in the following as fi′+1,j (acquisition), fi′+2,j (execution) and
fi′+3,j (replication), where i′ = 3 ·(i−1). Each phase fi′,j is characterized by
a minimum/maximum number of access requests and a minimum/maximum
computation time, which are denoted in the following as µ[min|max]

i′,j and

ex
[min|max]
i′,j respectively. Consider, for instance, the superblock s1

1 of Fig. 1,
which is mapped to its three constituent phases, f1 with [µmin1 , µmax1] = [4, 6],
f2 with [exmin2 , exmax2] = [45, 60]µs, and finally f3 with [µmin3 , µmax3] = [1, 4]2.
Similarly, the superblock set Sj can be mapped to an ordered sequence of
phases, i. e.,Sj = {f1,j , ..., f3·|Sj |,j}.

The goal of the first step is to specify all ordered subsets of phases that
can be executed within two consecutive processing cycles on pj , e. g., within
the time interval [0, 2Wj]. Note that we consider two instances of Sj in
order to account for the transition phase (slack time) between the two pro-
cessing cycles. To specify the relevant subsets, we first translate the su-
perblock sequence {Sj, Sj} = {s1,j , ..., s|Sj|,j , s1,j , ..., s|Sj|,j} into the phase
sequence {f1,j ..., f3·|Sj|,j , f1,j , ..., f3·|Sj|,j}. The latter corresponds to a set of
3·|Sj |(9·|Sj |+1)

2 unique ordered subsets of phases. Each ordered subset, de-
noted as Fm,d, is described by the index m of the first phase it contains and
the distance d to the last phase, respectively, such that:

Fm,d = {fm,j , ..., fm+d,j}, ∀d ∈ [0...6 · |Sj | − 1], ∀m ∈ [1...3 · |Sj |] (1)

Note that (a) we consider only those subsets with m + d ≤ 6 · |Sj | and (b)
that if m+d > 3 · |Sj |, then phase fm+d,j is equivalent to f(m+d)%|Sj |,j of the
second processing cycle3. One may think of the phase subsets as sliding win-
dows, including up to d successive superblock phases within two processing
cycles. For example, for the two instances of the superblock set S in Fig. 1,
which consists of just one superblock, s1, the (15) possible ordered subsets
are F1,1, F2,2, F3,3 (each phase in isolation), F1,2, F2,3, F3,4 (every subset of 2
successive phases), F1,3, F2,4, F3,5 (3 successive phases), F1,4, F2,5, F3,6 (4 suc-
cessive phases), F1,5, F2,6 (5 successive phases), and finally F1,6 (6 successive
phases).

1The index of the processing core has been omitted for clarity of presentation.
2Note that due to the dedicated access model, exmin

1 = exmax
1 = exmin

3 = exmax
3 = 0

and µmin
2 = µmax

2 = 0.
3E.g., phase subset F3,5 in Fig. 1 covers phases f3,j of the first and f1,j , f2,j of the

second processing cycle.

5

A E R

S
s1

f1 f2 f3

A E R

S

f1 f2 f3

g

F3,5

µmin
1 = 4

µmax
1 = 6

µmin
3 = 1

µmax
3 = 4

 exmin
2 = 45µs

 exmax
2 = 60µs

0 W1 = 300µs W1 = 600µs

A ...

2

Figure 1: Two consecutive executions of superblock set S

2.2 Computing time windows and number of access requests
within them

Every phase subset Fm,d can be associated with several time windows with
different number of access requests. As shown in the following, we can com-
pute these time windows such that they are as short as possible while they
contain as many access requests as possible. This way the windows represent
the worst-case interference that the phase subset can cause to any other task
attempting to access the shared resource within their duration.

Each time window is defined by a tuple (γ,∆), where γ is the maximum
amount of requests that can occur in its duration ∆. Let us consider the
two instances of S in Fig. 1 and particularly, the phase subset F1,1 = {f1}.
It is easy to notice that the shortest time window that includes the first
access request has a length of 0 (request is issued immediately upon start
of f1), which yields the tuple (1,0). Similarly, the second access request
can be issued at earliest C time units after issuing the first one, namely
immediately after the first is served, yielding the tuple (2, C). In the same
way, we can obtain also the tuples (3, 2C), (4, 3C), and also (5, 4C) and (6,
5C) since µ1 ∈ [4, 6]. Next, we consider the phase subset F1,2 = {f1, f2}. For
this subset, since f2 is an execution phase, there are no time windows with
newly issued access requests that have not been considered already. On the
contrary, the phase subset F1,3 = {f1, f2, f3} results in new time windows.
For instance, if we take µ1 = µmin1 = 4, a 5th access request can be issued
in time windows with a length between (4C + exmin2) and (4C + exmax2),
yielding e. g., the tuples (5, 4C+ exmin2) and (5, 4C+ exmax2). We can notice
that these tuples correspond to longer time windows that the previously
computed tuple (5, 4C), so they will not contribute to the construction of
the arrival curve, as shown in Sec. 2.3. A new tuple can be also computed
if we consider the shortest time window that includes 7 access requests. For
all possible values of µ1 ∈ [4, 6], this time window has at least a length of
(6C + exmin2), yielding the tuple (7, 6C + exmin2), and so forth.

Generally, each phase subset Fm,d results in up to 4 · µmaxm+d,j new time
windows on condition that its last phase, fm+d,j , is an access (acquisition of

6

replication) phase. Otherwise, Fm,d does not contribute any time windows
that have not been considered already. In the first case, we seek new windows
in Fm,d which differ from each other by at least 1 access request. Such
windows can be specified if we consider the accesses of the last phase fm+d,j .
Actually, each newly issued access request of fm+d,j can occur in up to 4
different time windows, if we consider the minimum and maximum access
requests for each access phase and the minimum and maximum computation
time for each execution phase in Fm,d. All these parameter combinations,
which need to be examined to guarantee that the worst-case behavior is
accounted for, lead to a total of 4 · µmaxm+d,j windows per phase subset.

The time lengths ∆m,d,k and the respective access requests γm,d,k of the
windows of Fm,d are computed as in Eq. 2 and 3, ∀k ∈ [1, µmaxm+d,j]:

∆x,y
m,d,k =

m+d−1∑
i=m+1

exxi,j +

(
m+d−1∑
i=m

µy
i,j + k − 1

)
· C (2)

γym,d,k =

m+d−1∑
i=m

µy
i,j + k (3)

Note that the superscripts x = max or x = min denote maximum or min-
imum computation time, and y = max or y = min maximum or minimum
number or access requests for each phase, respectively.

Moreover, it is interesting to note that computing the time windows for
subsets Fm,d, whose phase sequence spans over a processing cycle, needs to
consider the gap (slack time) g between the last phase of Sj and the period
Wj of the processing cycle. Example F3,5 in Fig. 1 illustrates such a case. To
represent the worst-case access behavior, we need to minimize the gap and
deductively, the length of the time windows that include it. In fact, in the
actual multicore system, where the superblocks of Sj will compete against
superblocks of other cores for access to the shared resource, it is possible
that the incurred delays will cause the execution of Sj to be extended up
to the end of the processing cycle, as shown in Fig. 2. Therefore, unless
some information (bounds) on these delays is provided, we need to consider
g = 0 as the minimum feasible gap between two successive executions of Sj ,
in order to derive a safe arrival curve.

In conclusion, each phase subset Fm,d is characterized by a set of tuples
tx,ym,d,k(Eq. 4), i. e., a set of time windows and the respective number of access
requests that can be issued by pj within them. The tuples are defined for
each k ∈ [1, µmaxm+d,j] based on Eq. 2, 3 and the minimum feasible gap g, as
follows:

tx,ym,d,k = (γym,d,k,∆
x,y
m,d,k + g) (4)

7

A E R

S
s1

f1 f2 f3

S

µmin
1 = 4

µmax
1 = 6

µmin
3 = 1

µmax
3 = 4

 exmin
2 = 45µs

 exmax
2 = 60µs

0 W1 = 300µs W1 = 600µs

A ...

2

A E R

f1 f2 f3

Figure 2: Two consecutive executions of superblock set S (worst-case): The
WCRT of S is equal to Wj due to interference over shared resources.

2.3 Deriving the arrival curve

One can trivially notice that the worst-case access pattern of core pj can
occur when all superblocks in Sj emit the maximum number of access re-
quests, µmax,totj =

∑3·|Sj |
i=1 µmaxi,j , at every execution. This leads to a stream

of µmax,totj access requests which occurs with a minimum inter-arrival time
that is given by Eq. 5 if we consider the minimum execution times of all
superblocks and the minimum gap between any two successive execution
instances of Sj :

wj = µmax,totj · C +

3·|Sj |∑
i=1

exmini,j + g (5)

To derive a safe arrival curve that bounds all possible access request
streams of pj , one has to take into account the worst-case arrival pattern of
them. That occurs obviously when the stream of µmax,totj requests arrives
periodically with a period equal to wj (minimum inter-arrival time, Eq. 5)).

Based on the above observation, the initial part of the arrival curve can
be constructed by retrieving the maximum number of access requests for
every time interval ∆ = {0 . . . wj} from the computed tuples. In particular,
if function δ(t) returns the length of the time window and ν(t) the number
of access requests for each tuple t, then the upper arrival curve α̃j , for ∆ ∈
[0, wj], can be obtained as:

α̃j(∆) = argmax
∀tx,ym,d,k;δ(tx,ym,d,k)=∆

ν(tx,ym,d,k). (6)

The infinite arrival curve αj is then constructed as a periodic extension of
α̃j . Specifically, the periodic part is a scaled version of α̃j , which is repeated
l times for l ∈ N+ (infinitely). Therefore, αj is defined as follows:

αj(∆) =

{
α̃j(∆) 0 ≤ ∆ ≤ wj

α̃j(∆− l · wj) + l · α̃j(wj) otherwise (l ∈ N+)
(7)

8

where α̃j(wj) = µmax,totj .
Fig. 3 and 4 depict the upper arrival curve for the superblock set S of

Fig. 1 along with the tuples that were used for its derivation. For the arrival
curve of Fig. 4, it has been given that the minimum gap that can exist
between two successive executions of S is equal to g = 40µs, whereas for the
arrival curve of Fig. 3 no similar information is available, so the minimum
feasible gap has been conservatively assumed to be g = 0 in Eq. 4.

0 50 100 150 200 250 300 350
0

5

10

15

20

25

Max. access requests
Max. access requests
Max. access requests
Max. access requests
Max. access requests
Max. access requests
Upper arrival curve

N
u
m
b
e
r
o
f
a
cc
e
ss

re
q
u
e
st
s

Time interval (us)

g=0

ex2
min = 45us

Figure 3: Upper arrival curve with constructing tuples for superblock set S
(C = 10µs, g = 0µs)

2.4 Deriving the interference curve of multiple cores

When several processing cores (subset R ⊆ P) are considered, the sum of
their individual arrival curves (which are derived as shown previously, by
considering each core in isolation) represents a safe upper bound on the
interference α that these cores might cause on the arbiter of the shared
resource in any time interval ∆:

α(∆) =
∑
pj∈R

αj(∆) (8)

The interference curve α, which is computed by Eq. 8 is of particular im-
portance for the WCRT analysis methodology of [4], since it enables the ab-
straction of task execution and resource accessing on several cores through
a single arrival curve, which can easily modelled through a limited number
of timed automata.

9

0 50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

16

18

20

Max. access requests

Max. access requests

Max. access requests
Max. access requests

Max. access requests

Upper arrival curve

N
u
m

b
e
r

o
f

a
cc

e
ss

re
q
u
e
st

s

Time interval (us)

ex2
min = 45us

g = 40us

Figure 4: Upper arrival curve with constructing tuples for superblock set S
(C = 10µs, g = 40µs)

3 Abstractions of Timed Automata-based System
Specification

[4] presents in detail the network of timed automata that can be used to
model precisely a multicore resource-sharing system, complying with the as-
sumptions of Sec. 1. Because the application of model checking over such
a system specification is often of prohibitively high complexity, the same
work presents an abstraction combining timed automata with the real-time
calculus, in particular using an arrival curve to represent the worst-case in-
terference that several cores can cause over a shared resource (Sec. 2) and
modeling this curve with a pair of timed automata. Besides this basic ab-
straction step, however, more abstractions and optimizations of the timed
automata-based system specification can be considered, in order to reduce
the complexity of model checking. The most important of them are discussed
in the following.

3.1 System Specification with Timed Automata

1. Given that the complexity of model checking increases exponentially with
the number of clocks and clock constants that a network of timed au-
tomata employs, it is crucial to avoid any redundant clock variables. For
instance, if the system analysis is aimed at computing the WCRT of a

10

particular superblock within a core’s processing cycle, it suffices to use the
Superblock automaton (Fig. 2(a), Sec. 4.1.1 in [4]) only for the particular
superblock of interest. All remaining superblocks, which are scheduled
in the same processing cycle, can be modeled by a modified version of
the Superblock automaton that does not employ clock x (x measures the
elapsed time from the beginning to the end of a superblock execution).
Another trivial optimization of the system specification can be applied
when the processing cycle of a core features only one superblock or a
superblock sequence of which the total WCRT is of interest. In this case,
the Scheduler automaton for the particular core is redundant (its clock p
measures the same elapsed time as clock x of Superblock) and hence, it
can be omitted from the system specification.

2. In case of cores with synchronized processing cycles that access a FCFS-
or RR- arbitrated resource, the state space exploration for the verifica-
tion of a superblock’s WCRT can be restricted to the duration of one
hyper-period of the cores’ processing cycles. The hyper-period is defined
as the least common multiple of the cycles’ periods (lcm(W1, · · · ,Wn))
and within its duration all possible interference patterns are exhibited.
Therefore, the derivation of a superblock’s WCRT by exploring the fea-
sible scenarios in this time window only (’pruned’ state space) is safe.

To apply this optimization, the Superblock automaton has to be slightly
modified, as shown in Fig. 54. In particular, Superblock does no longer
model the (infinite) periodic execution of a superblock, but a finite num-
ber of executions, given by the parameter instances[id] (occurences of
superblock s1,j within the considered hyper-period, lcm(W1,··· ,Wn)

Wj
).

It should be noted that a similar optimization can be also applied in
case of TDMA- or FlexRay- arbitrated resources, on condition that the
hyper-period is redefined to account also for the period of the arbitration
cycle (lcm(W1, · · · ,Wn,Θ), where Θ denotes the length of the respective
arbitration cycle).

3. When verifying the WCRT of a superblock sequence on a core under
analysis (CUA) with access to a TDMA-arbitrated resource, considering
all possible interleavings between the scheduled phases on CUA and those
on the remaining cores is not necessary. That is because of the timing
isolation that such an arbitration scheme offers. Namely, one needs to
consider all possible relative offsets between the arrival of CUA’s access
requests and the beginning of its dedicated slot in the arbitration cycle,
independently of the activity on the remaining cores. Therefore, the
Superblock and Scheduler automata for all cores other than CUA can be

4Note that the Superblock automaton of Fig. 5 employs clock x to measure the elapsed
time within a period and it models superblocks which are fired at multiples of period[id].
This modification w.r.t. the basic Superblock automaton is applied to eliminate the need
of a Scheduler, as suggested earlier.

11

access[pid[tid()]]!

m <= umax_acq()

access[pid[tid()]]!

accessed[pid[tid()]]?

m=0,
x=0,
k++

x_exec <= exec_max()
x<=proc_period[id]

m<=umax_rep()

m++
accessed[pid[tid()]]?

EndOfPeriod

End

m>=umin_acq()

Acq

Rep

Exec

Inactive

x==period[id] &&
k<instances[id]

x==period[id] &&
k == instances[id]

x_exec >= exec_min()

m>=umin_rep()

m<umax_rep()

m<umax_acq()

m=0,
x_exec=0

m++

x_exec=0

x=0

m=0

Figure 5: Superblock - instances[id] periodic executions with period
period[id].

completely eliminated from the system specification without affecting the
correctness of the obtained WCRT estimates.

3.2 System Specification with Timed Automata and Real-
Time Calculus

1. In a system specification where the interference caused by several cores is
abstracted through their aggregate access request arrival curve α (Eq. 8,
Sec. 2) and the shared resource is FCFS- or RR-arbitrated, the Superblock
automaton for a superblock on the core under analysis can be simplified
to model not periodic execution, but a single execution instead. Since all
possible interference streams of the remaining cores (bounded by α) can
be explored for the time interval of one superblock execution and due to
the arrival curve property of sub-additivity, the WCRT observed during
this interval (’pruned’ state space) is a safe bound of the overall WCRT.
This optimization also eliminates the need for representing the Scheduler
and/or the remaining Superblock instances of the CUA, thus reducing fur-
ther the number of timed automata, clocks and synchronization channels
in the system specification.

The suggested optimization can be also applied for systems with a
TDMA- or FlexRay-based resource arbiter. In this case, however, we

12

need to consider (enumerate and model) all possible offsets for the start-
ing time of the superblock within the respective arbitration cycle, in order
to obtain safe WCRT estimates. Consider, for example, that the analyzed
superblock is executed for the first time at time 0 and that it is repeated
periodically with a period of 1000µs, while the TDMA arbitration cycle
has a period of 200µs, starting also from time 0. In this case, every new
superblock execution coincides with the beginning of a new arbitration
cycle (offset= 0). If the processing cycle had a period of 400µs though,
every new superblock execution would start either at the beginning of an
arbitration cycle or 200µs afterwards (offset∈ {0, 200}). This information
is modelled through variable offset in the modified Superblock automa-
ton of Fig. 6. Verification of a superblock’s WCRT has to be repeated
for all its possible values, to account for all potential offsets between the
emission of CUA’s access requests and the beginning of its dedicated slot
in the arbitration cycle.

m++

m=0,
x=0

m=0,
x_exec=0

m>=umin_rep()

m<umax_acq()

x_exec >= exec_min()

m>=umin_acq()

m<=umax_rep()

x_exec <= exec_max()

m<umax_rep()

m <= umax_acq()

x<=offset

x==offset

access[cua_id]!

access[cua_id]!

accessed[cua_id]?

accessed[cua_id]?

Rep

Inactive

Exec

Acq

m=0

m=0

m++

Figure 6: Superblock - Single execution starting offset time units after the
beginning of the arbitration cycle.

2. For system specifications with a TDMA arbiter, the interference from the
competing cores can be ignored (not modeled). This is because it does
not affect the WCRT of the superblocks executing on CUA. The same
holds also for the static segment of the FlexRay arbitration cycle.

3. In order to reduce the synchronisation frequency between the interfer-
ence generating automata (Upper Bound, Access Request Generator, see

13

Sec. 4.2.2, [4]) and the RR or FlexRay Arbiter, it is possible to change
the granularity of their communication, by enabling the interfering ac-
cess requests to arrive in bursts at the arbiter. That means that the
two interference generating automata can be slightly modified so that
the access requests are no longer emitted one by one, but in bursts on b,
where b is a divider of the maximum capacity Bmax of the leaky bucket
they implement. Similarly, the Arbiter automata have to be adapted to
store the received access requests in their queues and serve them as they
would in the original system (where they would have been emitted one
by one). This optimization has no effect on the correctness or tightness
of the WCRT estimates of CUA’s superblock, while it causes a decrease
in the verification time due to the reduced need for inter-automata syn-
chronization.

4. The last optimization is related to the construction of the access requests
arrival curves αj for a system’s processing cores. As has been already
presented in Sec. 2, this requires information on the minimum ’gap’ g
between two successive executions of the superblock sequence Sj . If this
information is not available, the gap is taken equal to 0 although this
assumption may yield overly pessimistic arrival curves (see, e. g., Fig. 3).
However, for systems with FCFS- or RR-arbitrated resources, the mini-
mum gap can be conservatively estimated (even if no relevant information
is provided) by assuming that every access of core pj is delayed by all re-
maining cores. That is, we assume that every access request of pj arrives
at the resource arbiter immediately after a burst of (unserved) requests
by all competing cores, which results in a response time tr = N · C for
every request. This pessimistic scenario provides a conservative WCRT
estimate for Sj (WCRTcons(Sj)= µmax,totj · tr +

∑3·|Sj |
i=1 exmaxi,j) and hence,

a safe lower bound on g (g = Wj−WCRTcons(Sj)), which can be used to
construct a tighter arrival curve for pj (see, e. g., Fig. 4). The suggested
optimization does not reduce the complexity of model checking, but aims
at reducing the pessimism of the WCRT estimates for CUA’s superblocks.

4 Conclusion

This technical report presented (as a complement to [4]) methods to reduce
the complexity of model checking for timed automata-based specifications
of multicore systems, where tasks compete for access to mutually exclusive
shared resources. As the case studies of [4] (Sec. 5) indicate, application of
these methods (abstraction of interference of several cores with arrival curves
and further optimizations based on arbitration policy of shared resource) can
significantly boost the scalability of the suggested WCRT analysis method.
This is a promising finding, opening new possibilities for tight and scalable
interference analysis in multicore systems, which remain to be explored in

14

future work.

References

[1] Flexray communications system protocol specification, version 2.1, re-
vision a. http://www.flexray.com/.

[2] R. Alur and D. L. Dill. Automata For Modeling Real-Time Systems.
In Automata, Languages and Programming, pages 322–335. Springer,
1990.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. In
Formal Methods for the Design of Real-Time Systems, pages 200–236,
2004.

[4] G. Giannopoulou, K. Lampka, N. Stoimenov, and L. Thiele. Timed
model checking with abstractions: Towards worst-case response time
analysis in resource-sharing manycore systems. In Proc. International
Conference on Embedded Software (EMSOFT), Tampere, Finland, 2012.

[5] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of de-
terministic queuing systems for the internet. Springer-Verlag, Berlin,
Heidelberg, 2001.

[6] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele.
Worst case delay analysis for memory interference in multicore systems.
In Design, Automation, Test in Europe Conference, pages 741–746,
2010.

[7] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for TDMA
arbitration in resource sharing systems. In Real-Time and Embedded
Technology and Applications Symposium, pages 215–224, 2010.

[8] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Worst-case response time analysis of resource access models in multi-
core systems. In Design Automation Conference, pages 332–337, 2010.

[9] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Timing analysis for resource access interference on adaptive resource ar-
biters. In Real-Time and Embedded Technology and Applications Sym-
posium, pages 213–222, 2011.

[10] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Symposium on Circuits and Sys-
tems, volume 4, pages 101–104, 2000.

15

[11] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand. Memory hierarchies, pipelines, and buses for future ar-
chitectures in time-critical embedded systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 28(7):966
–978, 2009.

16

