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ABSTRACT

Recent research has demonstrated the potential of deploying deep

neural networks (DNNs) on resource-constrained mobile platforms

by trimming down the network complexity using different compres-

sion techniques. The current practice only investigate stand-alone

compression schemes even though each compression technique

may be well suited only for certain types of DNN layers. Also, these

compression techniques are optimized merely for the inference

accuracy of DNNs, without explicitly considering other application-

driven system performance (e.g. latency and energy cost) and the

varying resource availabilities across platforms (e.g. storage and

processing capability). In this paper, we explore the desirable trade-

off between performance and resource constraints by user-specified

needs, from a holistic system-level viewpoint. Specifically, we de-

velop a usage-driven selection framework, referred to as AdaDeep,

to automatically select a combination of compression techniques

for a given DNN, that will lead to an optimal balance between

user-specified performance goals and resource constraints. With

an extensive evaluation on five public datasets and across twelve

mobile devices, experimental results show that AdaDeep enables up

to 9.8× latency reduction, 4.3× energy efficiency improvement, and

38× storage reduction in DNNs while incurring negligible accuracy

loss. AdaDeep also uncovers multiple effective combinations of

compression techniques unexplored in existing literature.
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1 INTRODUCTION

There is a growing trend to bring machine learning, especially deep

neural networks (DNNs) powered intelligence to mobile devices.

Many smartphones and handheld devices are integrated with intelli-

gent user interfaces and applications such as hand-input recognition

(e.g. iType[30]), speech-based assistants (e.g. Siri), face recognition

enabled phone-unlock (e.g. FaceID). New development frameworks

targeted at mobile devices have also been launched (e.g. Tensor-

Flow Lite) to encourage novel DNN-based mobile applications. In

addition to smartphones, DNNs are also expected to execute locally

on a wider range of mobile and IoT devices, such as wearables[34]

(e.g. Fitbit wristbands) and smart home infrastructure (e.g. Amazon

Echo). The diverse applications and the various mobile platforms

raise a challenge for DNN developers and users: How to generate

the DNN that meet the application performance requirements on the

target resource-constrained mobile platforms?

Generating DNNs for mobile platforms is non-trivial because

many successful DNNs are computationally intensive while mobile

devices are usually limited in computation, storage and power. For

example, LeNet [29], a popular DNN for digit classification, has 60k

weight and 341k multiply-accumulate operations (MACs) per image.

AlexNet [23], one of the most famous DNNs for image classification,

requires 61M weights and 724M MACs to process a single image. It

can become prohibitive to download applications powered by those

DNNs to local devices. These DNN-based applications also drain

the battery easily if executed frequently.

In view of those challenges, DNN compression has been widely

investigated to reduce the precision of weights and the number

of operations during or after DNN training so as to shrink the

computation and the size of the original DNNs while remaining

the desired accuracy [41]. Various DNN compression techniques

have been proposed, including weight compression [6] [16] [25],

convolution decomposition [7] [18] [32], and special layer architec-

tures [20] [31]. However, there are two major problems in existing

DNN compression techniques.

• Most DNN compression techniques aim to provide a one-for-

all solution without considering the application performance

requirements and the platform resource constraints. A single

Prof. Junzhao Du is the corresponding author.
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compression technique may not suffice to meet the diverse

user demands on the generated DNNs. DNN compression

techniques should be selected on-demand, i.e., adapt to the

requirements and constraints on accuracy, latency, storage,

and energy imposed by developers and the target platform.

• Most combinations of DNN compression techniques areman-

ually selected while the selection criteria remain a black-box

to end developers. An automatic compression framework

that allow user-defined criteria will benefit the development

of DNN-powered mobile applications.

In this paper, we propose AdaDeep, a framework that automat-

ically selects a combination of DNN compression techniques to

adapt to user-specified performance requirements and platform-

imposed resource constraints on accuracy, latency, storage and

energy consumption. We define DNN compression techniques as a

new high-level hyper-parameter of DNNs. To model various user

demands, we formulate the tuning of DNN compression as a con-

strained hyperparameter optimization problem. Due to the large

numbers of combinations of DNN compression techniques and the

varying resource constraints, it is intractable to obtain a closed-

form solution to the optimization problem. Inspired by the emerging

trend to automate the engineering process of deep model architec-

tures [50] [51], AdaDeep designs a reinforcement learning based

optimizer to automatically and effectively solve the constrained op-

timization problem. We implement AdaDeep with TensorFlow [14]

and evaluate its performance over five different public benchmark

datasets for DNNs on twelve different mobile devices. Evaluations

show that AdaDeep enables a reduction of 2.1× - 38× in storage,

1.1×- 19.8× in latency, 1.5×- 4.3× in energy consumption, and 1.1×-
9.8× in computational cost, with a negligible accuracy loss (< 2.1%)

for various datasets, tasks, and mobile platforms.

The main contributions of this work are summarized as follows.

• To the best of our knowledge, this is the first work that in-

tegrates DNN compression into a hyperparameter tuning

framework that aims to balance multiple user-defined re-

quirements and platform resource requirements.

• We propose a reinforcement learning based optimizer to au-

tomatically select the best combination of DNN compression

techniques. AdaDeep extends the automation of deep model

architecture tuning to include DNN compression.

• Experiments show that the DNNs generated by AdaDeep

achieve comparable performance to existing compression

techniques under various user demands (datasets, tasks, and

mobile platforms). AdaDeep also uncovers some combina-

tions of compression techniques suitable for mobile plat-

forms that have not been proposed in previous DNN com-

pression works [6][20][31].

In the rest of this paper, we present an overview of AdaDeep in

Section 2, formulate the user demands in terms of different metrics

in Section 3, present the automatic optimizer in Section 4, and eval-

uate the performance of AdaDeep in Section 5. Finally we review

related work in Section 6 and conclude this work in Section 7.

2 OVERVIEW

This section presents an overview of AdaDeep. From a system-

level viewpoint, AdaDeep automatically generates the most suitable

Figure 1: Block diagram of AdaDeep. Users e.g. DNN applica-

tion developers, submit their system performance require-

ments and the resource constraints of the target platform to

AdaDeep. Then AdaDeep automatically generates a DNN that

balances these requirements and constraints.

compressed DNNs that meet the performance requirements and

resource constraints imposed by end developers and the target

mobile or embedded platforms.

AdaDeep consists of three functional blocks: DNN initialization,

user demand formulation, and on-demand optimization (see Figure 1).

The DNN initialization block selects an initial DNN model for the

on-demand optimization block from a pool of state-of-the-art DNN

models (see Section 5.1). The user demand formulation block calcu-

lates performance and resource constraints imposed by users (see

Section 3), which are then input into the on-demand optimization

block as the optimization goals and constraints. The on-demand op-

timization block takes the initial DNN model and the optimization

constraints to automatically search for an optimal combination of

DNN compression techniques that maximizes the system perfor-

mance while satisfying the resource constraints (see Section 4).

Mathematically,AdaDeep aims to solve the following constrained

optimization problem.

arдmax
Js ∈Jall

μ1N (A −Amin ) + μ2N (Emax − E)

s.t. T ≤ Tbдt , S ≤ Sbдt , (1)

where A, E, T and S denote the measured accuracy, energy cost,

latency and storage of a given DNN running on a specific mobile

platform. User demands are expressed as a set of constraints on accu-

racy, energy, latency and storage. Specifically, Amin and Emax are

the minimal accuracy and maximal energy acceptable by the user.

The two constraints are combined by coefficients μ1 and μ2. N (x) is
a normalization process, i.e., N (x) = (x − xmin )/(xmax − xmin ) to
transform accuracy and energy to the same scale. We denote Tbдt
and Sbдt as the latency budget and the storage budget imposed by

the target mobile platform. The accuracy A, energy cost E, latency
T and storage S are determined by the DNN architecture as well as

the target mobile platform. These variables can be tuned by apply-

ing different combinations of DNN compression techniques. The

goal of AdaDeep is to select the best combination of compression

techniques Js from the set of all possible combinations Jall that
satisfies the performance requirements and resource constraints.

We maximize the accuracy A because it is the most important

performance metric for a DNN. We minimize E but only constrain
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S within a threshold because mobile devices are usually battery-

powered and many applications require continuous inference from

deepmodels. That is, energy effeciency is in general more important

than storage for mobile applications.We do not minimizeT but limit

it within a threshold because the T of many DNNs is acceptable (in

the order of millisecond [26]).

Technically, AdaDeep faces two challenges.

• It is non-trivial to derive the accuracy A, energy cost E, la-
tencyT and storage S of a DNN. For example, there is still no

universal consensus on the estimation models on energy con-

sumption of DNNs on mobile devices. In Section 3, AdaDeep

proposes a systematic way to calculate these variables and

associates them to the parameters of a DNN and the given

mobile platform. We apply the state-of-the-art estimation

models and modify them to suite the software/hardware im-

plementation considered in our work. Evaluations show that

the models can achieve the same ranking as the measured

one on the actual mobile device.

• It is intractable to obtain a closed-form solution to Eq.(1).

AdaDeep employs deep reinforcement learning (DRL) based

optimiation to solve the problem (see Section 4). Although

reinforcement learning is a well-known optimization tech-

nique, its combination with deep learning (i.e., DRL) and its

applications in automatic deep neural network architecture

optimization is emerging [50]. We follow this trend and ap-

ply a novel DRL structure in the context of automatic DNN

model compression for mobile devices.

3 USER DEMAND FORMULATION

This section describes how we formulate the user demand metrics,

including accuracy A, energy cost E, latency T and storage S , in
terms of DNN parameters and platform resource constraints. Such

a systematic formulation enables AdaDeep to predict the most

suitable compressed DNNs by user needs, before being deployed

into various mobile devices.

Accuracy A. The inference accuracy is defined as

A = prob(d̂i = di ), i ∈ Dmb (2)

where d̂i and di denote the classifier decision and the true label, re-

spectively, and Dmb stands for the sample set in the corresponding

mini-batch.

Storage S . We calculate the storage needed to run a DNN using

the total number of bits associated with weights and activations:

S = Sf + Sp = |X| Ba + |W| Bw (3)

where Sf and Sp denote the storage requirement for the activations

and weights, X and W are the index sets of all activations and

weights in the network, and Ba and Bw denote the precision of

activations and weights, respectively. For example, Ba = Bw = 32

bits in TensorFlow [14].

Computational Cost C. We model the computational cost C
of a DNN as the total number of multiply-accumulate (MAC) op-

erations in the DNNs. For example, for a fixed-point convolution

operation, the total number of MACs is a function of the weight

and activation precision as well as the size of the involved weight

and activation vectors [45].

Latency T . The inference latency of a DNN executed in mobile

devices strongly depends on the system architecture and memory

hierarchy of the given device. We referred to the latency model in

[45] which has been verified in hardware implementations. Specifi-

cally, the latency T is derived from a synchronous dataflow model,

and is a function of the batch size, the storage and processing ca-

pability of the deployed device, as well as the complexity of the

algorithms, i.e., DNNs.

Energy Consumption E. The energy consumption of evaluat-

ing DNNs include computation cost Ec and memory access cost

Em . The former can be formulated as the total energy cost of the

total MACs, i.e., Ec = ε1C , where ε1 and C denote the energy cost

per MAC operation and the total number of MACs, respectively.

The latter depends on the storage scheme when executing DNNs

on the given mobile device. We assume a memory scheme in which

all the weights and activations are stored in a Cache and DRAM

memory, respectively, as such a scheme has been shown to enable

fast inference execution [8] [48][47]. Hence E can be modeled as:

E = Ec + Em = ε1C + ε2Sp + ε3Sf (4)

where ε2 and ε3 denote the energy cost per bit when accessing

the Cache and DRAM memory, respectively. To obtain the energy

consumption, we refer to a energy model from state-of-the-art

hardware implementation of DNNs in [48], where the energy cost

of accessing the Cache and DRAM memory normalized to that of a

MAC operation is claimed to be 6 and 200, respectively. Accordingly:

E = ε1 ·C + 6 · ε1 · Sp + 200 · ε1 · Sf (5)

where ε1 is measured to be 52.8 pJ for mobile devices.

Summary. The user demand metrics (accuracy A, storage S ,
latency T and energy cost E) can be formulated with parameters

of DNNs (e.g. the number of MAC operations C , the index sets

of all activations X and weightsW) and platform-dependent pa-

rameters (e.g. the energy cost per bit). The parameters of DNNs

are tunable via various DNN compression techniques. Different

mobile platforms may differ in platform parameters and resource

constraints. Hence it is desirable to automatically select appropriate

compression techniques to optimize the performance requirements

and resource constraints for each application and mobile platform.

Note that it is difficult to precisely model certain user demand

metrics e.g. energy consumption since they are tightly coupled with

the underlying hardware and may change from device to device.

However, the ranking of the estimated costs of the DNNs derived by

the models above is consistent with the ranking of the actual costs

of these DNNsmeasured onmobile devices. As will be introduced in

the next section, the proposed AdaDeep framework is generic and

more advanced metric estimation models can be easily integrated.

4 ON-DEMAND OPTIMIZATION USING
DEEP REINFORCEMENT LEARNING

We leverage deep reinforcement learning (DRL) to solve the op-

timization in Eq.(1). Specifically, a DQN is employed to learn the

automatic agent for selection of hyper-parameters as well as com-

pression techniques, to maximize the performance benefits (i.e., A
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and E) while satisfying users’ demands on the cost constraints (i.e.,

S and T ). Figure 2 shows the DRL optimizer designed for AdaDeep.

Figure 2: The proposed DRL optimizer for Eq.(1). It takes

performance requirements and cost constraints as input, au-

tomatically selects compression techniques as well as other

hyperparamters, and outputs an optimally compressed neu-

ral network. C, Mp and Q stand for the conv layer, the max-

pooling layer and the DQN based optimizer, respectively.

4.1 Basics for DRL and DQN

Reinforcement learning refers to a machine learning paradigm that

learns an optimal policy, by trail and error, for sequential decision

making problems [35]. The environment is typically formulated as

a Markov decision process (MDP) and the reinforcement learning

has been recently combined with deep learning, also known as deep

reinforcement learning (DRL) to handle complex input, action and

rewards to learn an agent.

In the literature of MDP and DRL, a policy π refers to a specific

mapping from the state o to the actiona. A reward functionR(o,o′, s)
returns the gain when transitioning to state o′ after taking action
a in state o. Given a state o, an action a and a policy π , the action-
value (a.k.a. the Q function) of the pair (o, a) under π is defined

by the action-value, which defines the expected future discounted

reward for taking action a in state o and then following policy π
thereafter. A deep Q-network (DQN) iteratively improves its Q-
function estimate by taking actions in the environment, observing

the reward and next state, and updating the estimate. DQN has the

proven capability to find the optimal policy for any finite MDP [35].

Once a DQN is learned, the optimal policy for each state o can be

decided by selecting a with the highestQ-value. Table 1 explains the

contextual definitions of DQN terms in our compression problem.

We propose to adopt DQN for automatic DNN model compres-

sion in AdaDeep for the following reasons.

• DQN can implement automatic decision based on the dy-

namically detected performance and cost metrics.

• The DQN-controller, which is also a neural network archi-

tecture, is suited for the feed-forward and back-propagation

when training the target regular DNN. The DQN’s output

is a decision signal that controls which compressed models

are selected and combined. In other words, the regular DNN

and the DQN can be trained jointly end-to-end [33].

• DRL is suited for non-linear and non-differentiable optimiza-

tion. Also, within the framework of DQN, we can add some

more new compression techniques by simply adding branch

sub-networks (optional actions), and figure out the function

of the complex optimization problem’s input and results

by the DQN mapping. Therefore a DQN-based optimizer

provide both capability and flexibility in DNN compression.

To apply DQN in DNN compression, we need to (i) carefully

design a reward function to utilize DQN to solve a constrained op-

timization problem; and (ii) design a DQN structure with tractable

computation complexity. In this work we propose a novel DQN

based optimizer for Eq.(1), which separates the reward of perfor-

mance gain and constraint satisfaction into two streams by two

parallel parts in the dueling DQN structure [46].

4.2 Design of Reward Function in AdaDeep

To define the reward function R to optimize Eq.(1), a common

approach is to use the Lagrangian Multiplier function [21] to first

convert the constrained formulation into an unconstrained one:

R = [μ1Norm(A −Amin ) + μ2Norm(Emax − E)
+ μ3Norm(Tbдt −

C

P
) + μ4Norm(SCache − Sp )]

(6)

where μ1, μ2, μ3 and μ4 are the Lagrangian multipliers. It merges

the objective (e.g. accuracy, energy) and the constraint satisfaction

(how well the latency and storage usages meet budget requirement).

However, maximizing Eq.(6) rather than Eq.(1) can cause ambiguity,

in the sense that the following two situations may lead to the same

objective values and are thus indistinguishable: (i) poor accuracy

and energy performance, with low latency/storage usage; and (ii)

high accuracy and energy performance, with high latency/storage

usage. Such ambiguity can easily result in a compressed DNN that

exceeds the latency/storage usage defined by end developers.

Figure 3: Architecture of dueling DQN adopted by AdaDeep.

The rewards of performance gain G and constraint satisfac-

tion H are separated to keep the computational load of the

optimization tractable.

To avoid such ambiguity, we define two loss functions for the

objective gain and for the constraint satisfaction, respectively. We

adopt a dueling DQN architecture [46], which separates the state-

action value function and the state-action advantage function (see

Figure 3) into two parallel streams. The two stream share the con-

volutional (conv) layers with parameters ω which learn the repre-

sentations of state, but are followed by two separate columns to

generate state-action objective gain valueG with weight parameter

β , and the state-action constraint satisfaction value H with weight

parameter η, respectively. The two columns are then aggregated to

output an single state-action value Q . We define a novel Q value:

Q(o,a;ω, β,η) = G(o,a;ω, β) + H (o,a;ω,η) (7)
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Table 1: DQN terms explained in the context of DNN compression.

DQN Terms Contextual Meanings for DNN compression

State o∼Os Input feature size to DRL

Action a∼As Selectable combinations of compression techniques

Reward function R Optimization gain G & constraints satisfaction H

Q value = γ
∑
R Potential optimization gain & constraints satisfaction

Training loss function Difference between true Q value with the estimated Q value of DQN

The network G and H comes with their corresponding reward

functions R1 and R2,:

R1 = μ1Norm(A −Amin ) − μ2Norm(Emax − E)
R2 = μ3Norm(Tbдt −

C

P
) + μ4Norm(SCache − Sp )

(8)

After taking an action, we can observe the reward R1 forG , and R2
for H. Their interaction and balance guide the selection process.

Algorithm 1: DRL Optimizer Algorithm

Input: Dt , Budдets , a ∼ As
Output: DNNoptimal

1 Initialize Os , As , DNN ;

2 Initialize DQN’s predict Q with random ω, β,η;

3 Initialize DQN’s target Q with weights ω, β,η;

4 for episode in range(1000) do

5 Select at for ot by Q value (ϵ − дreedy) and observe Rt ;

6 Store (ot ,at ,Rt ,ot+1) in reply memory Λ;

7 Qtдti = R1+R2+γQ(o′,arдmaxQ(o′,a′;ωi , βi ,ηi );ω, β,η);

8 Perform greedy descent iteratively to tune DQN’s ω on

loss of random mini-batches replay:

L(ω) = E(o,a,R,o′)∼Λ(Qtдti −Q(oi ,ai ;ωi , βi ,ηi ))2; Every
num steps reset Qtдt = Q ;

9 end

4.3 Design of DRL Optimizer in AdaDeep

The proposed DRL optimizer based on DQN is outline in Algorithm

1. We select random action with probability ϵ and select the action

with largest Q value by 1 − ϵ probability (ϵ = 0.001 by default). To

build a DQN with weight parameters ω, β and η, we optimize the

following loss function at iteration i to update Q(o,a;ωi , βi ,ηi ).
L(ωi ) = E(o,a,R,o′)∼Λ[(Qtдti −Q(o,a;ωi , βi ,ηi ))2] (9)

with the frozen Q value learned by target network [43]:

Qtдti = R1 + R2 + γQ(o′, argmaxQ(o′,a′;ωi , βi ,ηi );ω, β,η) (10)

We adopt the standard DQN training techniques [46] and use the

update rule of SARSA [44] with the assumption that future rewards

are discounted by a factor γ [35] of the default value 0.01. The DQN

is further trained with random samples from reply memory Λ to

increase the efficiency of experience replaying.

Note that since DRL-based optimization is still heuristic, the

proposed optimizer in AdaDeep cannot theoretically guarantee a

global optimal solution. However, as we will show in the evalua-

tions, the DRL-based optimizer outperforms exhaustive or greedy

approaches in terms of the performance of the compressed DNNs.

5 EVALUATION

This section presents the evaluations of AdaDeep across various

recognition tasks and mobile platforms.

5.1 Experiment Setup

We first present the settings for our evaluation.

Implementation.We implementAdaDeepwith TensorFlow [14]

in Python. The compressed DNNs generated by AdaDeep are then

loaded into the target platforms and evaluated as Android projects

executed in Java. Specifically, AdaDeep selects an initial DNN from

a pool of three state-of-the-art DNN models, including LeNet [29],

AlexNet [23], and VGG [37], according to the size of samples in Dt .

For example, LeNet is selected when the sample size is smaller than

28×28, otherwise AlexNet or VGG is chosen. Standard training tech-

niques, such as stochastic gradient descent (SGD) and Adam [22],

are used to obtain weights for the DNNs.

Evaluation applications and datasets. To evaluate the per-

formance of the proposed AdaDeep, five commonly used mobile

applications are considered, for which the corresponding bench-

mark datasets are summarized in Table 2. Specifically, AdaDeep

is evaluated for hand-written digit recognition (D1: MNIST [28]),

image classification (D2: Cifar10 [24] and D3: ImageNet [9]), audio

sensing application (D4: UbiSound [36]), and activity recognition

(D5: Har [42]). According to the sample size (see Table 2), LeNet

[29] is selected as the initial DNN for D1,D2, D4 and D5, while

AlexNet [23] and VGG-16 [37] are chosen for D3.

Mobile platforms for evaluation. We evaluate AdaDeep on

twelve commonly usedmobile platforms, including six smartphones,

twowearable devices, two development boards and two smart home

devices, which are equipped with varied processors, storage and

battery capacity as elaborated in Table 3.

5.2 Layer Compression Technique Benchmark

In our experiment, the first step is to study the performance dif-

ferences of the state-of-the-art DNN compression techniques in

terms of user demand metrics, i.e., accuracy A, storage S , latency T ,
and energy cost E. The outcomes of this study indicates the need

to suitably combine compression techniques for different user de-

mands on performance and cost constraints, and will also serve as

baselines for evaluating AdaDeep.

5.2.1 Benchmark Settings. We apply ten mainstream compres-

sion techniques from three categories, i.e., weight compression
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Table 2: Summary of the applications and corresponding datasets for evaluating AdaDeep.

No. Task Dataset Description Input Size

D1 Digit MNIST [28] 55, 000 images, 10 classes (28, 28, 1)
D2 Image CIFAR-10 [24] 60, 000 images, 10 classes (32, 32, 3),
D3 Image ImageNet [9] a small version of ImageNet, 65, 000 images, 5 classes (120, 120, , 3)
D4 Audio UbiSound [36] 7, 500 audio clips in wav, 9 classes (40, 40, 1)
D5 Activity Har [42] 10, 000 records of accelerometer and gyroscope, 7 classes (33, 17, 1)

Table 3: Summary of the varied resource constraints of the mobile platforms for evaluating AdaDeep.

Type Device Processor DRAM Cache Battery

Smart

phones

1. Xiaomi Redmi 3S Qualcomm 430 3 GB L2-Cache(2 MB) 4100 mAh

2. Xiaomi Mi 5S Qualcomm B21 4 GB L2-Cache(1 MB) 3200 mAh

3. Xiaomi Mi 6 Qualcomm 835 6 GB L2-Cache(2 MB) 3350 mAh

4. Huawei pra-al00 HiSilicon kirin655 3GB L2-Cache(2 MB) 3000 mAh

5. Samsung note5 samsung exynos7420 4 GB L2-Cache(2 MB) 3000 mAh

6. HuaweiP9 HiSilicon kirin955 3 GB L2-Cache(4 MB) 3000 mAh

Wearable

devices

7. Sony watch SW3 Quad-core cortexA7 512 MB L2-Cache(1 MB) 420 mAh

8. Huawei watchH2P Snapdragon wear2100 768 MB L2-Cache(1 MB) 420 mAh

Boards
9. firefly-rk3999 Duad-core cortexA72 2 GB L2-Cache(2 MB) power-plug

10. firefly-rk3288 Duad-core cortexA17 2 GB L2-Cache(8 MB) power-plug

Smart

home

11. Xiaomi box 3S Amlogic S905 2 GB L2-Cache(2 MB) power-plug

12. Huawei box Hisilicon hi3798M 2 GB L2-Cache(1 MB) power-plug

(W1f ,W2,W3,W1c ), convolution decomposition (C1, C2, C3), and

special architecture layers (L1, L2, L3), to a 13-layer AlexNet (in-

put, conv1, pool1, conv2, pool2, conv3, conv4, conv5, pool3, fc1, fc2,

fc3 and output) [23] and compare their performance evaluated on

CIFAR-10 dataset (D2) [24] on a RedMi 3S smartphone (Device 1 in

Table 3). The details of the compression techniques are as follows.

• W1f : insert a fully-connected (fc) layer between fci and

fc(i+1) layers using the singular value decomposition (SVD)

based weight matrix factorization [25]. The number of neu-

rons k in the inserted layer is set as k = m/12, wherem is

the number of neurons in fci .

• W2: insert a fc layer between fci and fc(i+1) using sparse-

coding, another matrix factorization method [6]. The k-basis
dictionary used inW2 is set as k = m/6, where m is the

number of neurons in fci .

• W3: prune fc1 and fc2 using the magnitude based weight

pruning strategy proposed in [16]. It removes unimportant

weights whose magnitudes are below a threshold (i.e., 0.001).

• L3: replace the traditional fc layers, fci and fci+1, with a

global average pooling layer [31]. It generates one feature

map for each category in the last conv layer. The feature

map is then fed into the softmax layer.

• W1c : insert a conv layer between convi and pooli using SVD

based weight factorization [25]. The numbers of neurons k
in the inserted layer by SVD is set as k =m/12, wherem is

the number of neurons in convi .

• C1: decompose convi using convolution kernel sparse de-

composition [32]. It replaces a conv layer using a two-stage

decomposition based on principle component analysis.

• C2: decompose convi with depth-wise separable convolu-

tion [18] and we set the width multiplier α = 0.5. It is a key

technique of Google’s MobileNet [18], which decomposes

the standard conv into a depth-wise convolution and a 1 × 1

point-wise convolution.

• C3: decompose convi using the sparse random technique [7]

and we set the sparsity coefficient θ = 0.75. The technique

replaces the dense connections of a small number of chan-

nels with sparse connections between a large number of

channels for convolutions. Different from C2, it randomly

applies dropout across spatial dimensions at conv layers.

• L1: replace convi by a Fire layer [20]. A Fire layer is com-

posed of a 1 × 1 conv layer and a conv layer with a mix of

1 × 1 and 3 × 3 conv filters. It decreases the sizes of input

channels and filters.

• L2: replace convi by a micro multi-layer perceptron embed-

ded with multiple small kernel conv layers (Mlpconv) [31].

It approximates a nonlinear function to enhance the abstrac-

tion of conv layers with small (e.g. 1 × 1) conv filters.

The parameters (i.e., k inW1f ,W1c andW2, the depth multiplier α in

C2, the sparse random multiplier θ inC3) are empirically optimized

by comparing the performance improvement on the layer where

the compression technique is applied.

As shown in Figure 4, compression techniquesW1f ,W2,W3 and

L3 can be applied to the fc layers (fc1, fc2 and fc3), while W1c ,

C1, C2, C3, L1 and L2 are employed to compress the conv layers

(conv2, conv3, conv4 and conv5). For each layer compression tech-

nique, we load the compressed DNN on Device 1 to process the test

data 10 times, and obtain the mean and variance of the inference
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Figure 4: An illustration of the locations that different layer

compression techniques are applied to AlexNet.

performance and resource utilization cost, considering the varied

workload of the device at different test times.

5.2.2 Performance of Single Compression Technique. To illus-

trate the performance of different compression techniques, we com-

pare their compressed DNNs in terms of the evaluation metrics (A,
Sp , Sf , T and E), over both the initial layer that they are applied to

(see Figure 5) and the entire initial network, i.e., AlexNet (see Fig-

ure 6). First, we can see that overall these mainstream compression

techniques are quite effective in trimming down the complexity of

the initial network, with a certain accuracy loss (0.3% − 10.2%) or

accuracy gain (0.5% − 2.4%). For example, the compression tech-

niquesW3 and L3 reduce Sp by about 150 − 203MB, whileW1c ,

C1, C2, C3, L1 and L2 reduce Sp to be less than 10MB. Second, as
expected, compressing the fc layers (W1f ,W2,W3, and L3) results
in a higher Sp reduction, while compressing the conv layers (W1c ,

C1, C2, C3, L1 or L2) lead to a larger C reduction. This is due to

the common observation in DNNs that the conv layers consume

dominant computational cost while the fc layers account for most

of the storage cost. Third, most of the considered compression

techniques affect the Sf of both a certain layers and the AlexNet

model only in the order of KB, thus we only consider Sp for the

storage cost in following experiments. Fourth, a higher reduction

on Sp corresponds to a better energy efficiency in this experiment,

indicating that the energy cost of fetching weights, i.e., memory

access, dominates in the considered AlexNet model.

Summary. The performance of different categories of compres-

sion techniques on the same DNN varies. Within the same category

of compression techniques, the performance also differs. There is

no a single compression technique that achieves the best A, S , T
and E. To achieve optimal overall performance on different mobile

platforms and in different applications, it is necessary to combine

different compression techniques.

5.2.3 Performance of Blindly Combined Compression Techniques.

In this experiment, we compare the performance when blindly com-

bining two compression techniques, tested on a RedMi 3S smart-

phone (Device 1) using the AlexNet model and CIFA-10 dataset (D1).

Specifically, one of the four techniques to compress the fc layers

fc1 and fc2 (i.e.,Wf ,W2,W3 or L3) is combined with one of the six

techniques to compress the conv layer conv2 (i.e.,W1c , C1, C2, C3,

L1 or L2), leading to a total of 24 combinations. Among them, the

W1c +W2, L1 + L3 and L2 + L3 combinations have been introduced

in the prior works named SparseSep [6], SqueezeNet [20] and NIN

[31], respectively.

Table 4 summarizes the results. First, the compressed AlexNet

using the W3 technique achieves the best overall performance. In

particular, it achieves a detection accuracy of 79.9% and requires

a parameter storage of 6.09MB, an energy cost of 30.72mJ , and a

detection latency of 189ms . Second, compared with the compressed

model using W3, some combinations of layer compression tech-

niques, e.g.C2+W3 andC2+L3, reduce more than 48mJ of the energy
cost E, decrease the latency by about 103ms , and dramatically cut

down the storage requirement Sp by more than 18MB, while incur-
ring only 2.4% accuracy loss. On the other hand, some combinations,

e.g.W1c+L3 and C3+W3, incur over 28% accuracy loss, and might

perform worse than a single compression technique. Third, the

combination of L1+W3 achieves the best balance between system

performances and resource constraints.

Summary. Some combinations of two layer compression tech-

niques can dramatically reduce the resource consumption of DNNs

than using a single technique. Others may lead to performance

degradation. Furthermore, the search space grows exponentially

when combining more than two techniques. These results demon-

strate the need for an automatic optimizer to select the proper

combination of compression techniques.

5.3 Performance of AdaDeep

In this subsection, we first evaluate the performance of AdaDeep’s

core block DRL optimizer, and then test performance of AdaDeep

over five different tasks and on twelve different mobile platforms.

Furthermore, to show the flexibility of AdaDeep in adjusting the

optimization objectives based on user demand, we show some ex-

amples of the choices on the scaling coefficients in Eq. (8).

5.3.1 Performance of the proposed DRL optimizer. This experi-

ment is to evaluate the advantage of the proposed DRL optimizer

when searching for the optimal compression combination. To do so,

we compress [LeNet, MNIST] and [AlexNet, CIFAR-10] using the

DRL optimizer and two baseline optimization schemes and evalu-

ate the resulted DNNs on a RedMi 3S snartphone (Device 1). The

accuracy loss (%) and the cost reduction (×) are normalized over

the compressed DNNs using theW3 technique.

• Exhaustive optimizer: This scheme exhaustively test the

performance of all combinations of two compression tech-

niques (similar to Section 5.2.3), and select the best trade-off

on the validation dataset of MNIST, i.e., the one that yields

the largest reward value defined by Eq. (6). The selected one

is L2+L3, i.e., Fixed, in both the cases of LeNet on MNIST and

AlexNet on CIFAR-10.

• Greedy optimizer: It loads the DNN layer by layer and

selects the compression technique that has the largest reward

value defined by Eq. (6), in which both μ1 and μ2 are set to
be 0.5. Also, whenT or S violate the budgetTbдt or Sbдt , the
optimization terminates.

• DRL optimizer: It compresses the DNN using the DRL opti-

mizer as described in Section 4.We set the scaling coefficients

in Eq. (8) to be μ1 = 0.6 and μ2 = 0.4 considering that the

battery capacity in RedMi 3S is relatively large and thus the

energy consumption is of lower priority, and we set μ3 = 0.5

and μ4 = 0.5 in Eq. (8) because their corresponding con-

straints (i.e., C and Sp ) are equally important. The same as

in the Greedy search within this subsection.

Table 5 summarizes the best performance achieved by the above

three optimizers. We can see that the networks generated by our
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Figure 5: Performance of different layer compression techniques minus by the initial layer that they are applied to, in terms

of accuracy A, storage (Sp , Sf ), computational cost C, latency T , and energy cost E. The compression techniquesW1f ,W2,W3,

and L3 are applied to fc1 and fc2, whileW1c , C1, C2, C3, L1 and L2 are applied to conv2. The Y-axis denotes the accuracy loss (%)

over the initial AlexNet and the cost reduction over the initial layer that they are applied to.

Figure 6: Performance of different layer compression techniques normalized over the entire AlexNet in terms of accuracy

A, storage (Sp , Sf ), computational cost C, latency T , and energy cost E. The compression techniquesW1f ,W2,W3, and L3 are

applied to fc1 and fc2, whileW1c ,C1,C2,C3, L1 and L2 are applied to conv2. The Y-axis denotes the accuracy loss (%) and the cost

reduction over the original entire AlexNet.

DRL optimizer achieve the best overall performance in terms of

storage, latency, and energy consumption, while incurring negli-

gible accuracy loss (0.1% or 2.1%), compared to those generated

by the two baseline optimizers. In particular, compared with the

DNN compressed byW3, the best DNN from the Greedy optimizer

only reduces the storage size Sp by 4.6× and 2.2× in the cases of

[LeNet, MNIST] and [AlexNet, CIFAR-10], respectively. In contrast,

the best DNN from the Exhaustive optimizer, i.e., Fixed, can reduces

Sp by 23.9× and 3.5×, respectively, while that generated by the DRL
optimizer achieves a maximum reduction of 28.5× and 4.6× on Sp ,
respectively, in the two cases. Second, the network from the DRL

optimizer is also the most effective in reducing the latency (> 2.3×)
in both experiments, while those from the two baseline optimiz-

ers may result in an increased latency in some cases. For example,

the network from the Greedy optimizer increases T by 0.6× in the

[LeNet, MNIST] experiment and the one from the Exhaustive opti-

mizer introduces an 0.7× extra latency in the [AlexNet, CIFAR-10]

experiment. Third, when comparing the energy cost, Fixed is the

least energy-efficient (reduce the energy consumption by only 1.1×
over the DNN compressed byW3), while those from both the DRL

and Greedy optimizers achieve an energy reduction of 1.8× to 2.8×,
respectively. Meanwhile, the accuracy loss of the networks from
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Table 4: Performance of combining two compression techniques to compress both the fc layers and the conv layers, evaluated

on a RedMi 3S smartphone (Device 1) using the AlexNet model and CIFAR-10 dataset (D1).

Compression

technique

Measured accuracy & cost Compression

technique

Measured accuracy & cost

A(%) Sp (MB) T (ms) E(mJ ) A(%) Sp (MB) T (ms) E(mJ )
C1+W1f 74.2 15.3 180 62.8 L1+W1f 79.8 16.2 194 33.7

C1+W2 75.1 12.3 189 65.2 L1+W2 78.1 15.3 189 34.4

C1+W3 77.6 23.2 132 63.48 L1+W3 84.8 1.1 86 13.9

C1+L3 75.4 0.68 102 52.9 L1+L3[20] 87.1 1.6 257 78.2

C2+W1f 72.4 15.3 129 33.1 L2+W1f 86.4 17.4 305 108.4

C2+W2 71.8 14.9 130 31.3 L2+W2 86.9 17.1 312 100.1

C2+W3 81.8 2.9 124 14.8 L2+W3 88.7 10.6 266 51.6

C2+L3 81.5 0.7 98 16.9 L2+L3[31] 87.1 1.8 126 113.4

C3+W1f 59.3 16.7 236 43.4 W1c+W1f 78.4 16.1 139 36.1

C3+W2 57.5 15.7 210 42.7 W1c+W2[6] 79.2 16.4 147 39.3

C3+W3 53.2 3.2 60 21.7 W1c+W3 61.2 2.7 143 20.8

C3+L3 77.3 1.4 84 26.8 W1c+L3 56.2 1.2 27 22.9

Table 5: Performance of the best DNN generated by the DRL and baseline optimizers and tested on a RedMi 3S smartphone

(Device 1) using LeNet on MNIST (D1) and AlexNet on CIFAR-10 (D2). The accuracy loss % and the cost reduction (×) are
normalized over the corresponding DNN compressed usingW3.

Optimizer
Compared to the compressed LeNet Compared to the compressed AlexNet

A loss Sp T E A loss Sp T E

Exhaustive 0.1% 23.9× 2.7× 1.1× −7.2% 3.5× 0.7× 1.2×
Greedy 2.3% 4.6× 0.6× 2.7× 0.3% 2.2× 1.2× 1.9×
DRL 0.2% 28.5× 3.8× 2.8× −4.9% 4.6× 2.3× 1.8×

the two baseline optimizers ranges from 0.1% to 2.3%, while those

from our proposed DRL optimizer have the best accuracy (only a

0.2% degradation in the [LeNet, MNIST] case and even a 4.9% gain

in the [AlexNet, CIFAR-10] case). Finally, as for the training time,

the DRL optimizer requires a shorter, or equal, or longer time com-

pared with the exhaustive and Greedy optimizers (see Section 5.3.3

for examples of DRL’s required training time). Also, we recognize

that it is impossible to compare the performance of the network

generated by AdaDeep with that of the DNN compressed by the

optimal combination among all possible combinations, because it

is not practical to test all possible combinations of the considered

compression techniques and identify the optimal one.

Summary. DRL optimizer outperforms the other two schemes

in terms of the storage size, latency, and energy consumption while

incurring negligible accuracy in diverse recognition tasks. This is

because the run-time performance metrics (A, S , T and E) and the

resource constraints (S and T ) are systematically included in the

reward value and adaptively feedback to the DRL decision process.

5.3.2 AdaDeep over Different Tasks. In this experiment,AdaDeep

is evaluated on all the five tasks/datasets (see Table 2) using a RedMi

3S smartphone (Device 1). We set the scaling coefficients in Eq. (8)

to be the same as those for the DRL optimizer in § 5.3.1, i.e., μ1 = 0.6

and μ2 = 0.4, μ3 = 0.5 and μ4 = 0.5. In addition, we assume a Cache

storage budget of 2 MB and a latency budget of 10 ms.

Performance. Table 6 compares the performance of the best

DNNs generated by AdaDeep on the five tasks in terms of accuracy

loss, storage Sp , computation C (total number of MACs), latency T

and energy cost E, normalized over the DNNs compressed usingW3.

Compared with their initial DNNs, DNNs generated by AdaDeep

can achieve a reduction of 1.8× - 38× in Sp , 0.8× - 3.3× in C , 0.8×
- 19.8× in T , and 1.1× - 4.3× in E, with a negligible accuracy loss

(< 1%) or even accuracy gain (< 4.9%).

Summary. For different compressed DNNs, tasks, and datasets,

the combination of compression techniques found by AdaDeep

also differs. Specifically, the combination that achieves the best

performance while satisfying the resource constraints isC3+W3 for

Task 1 (on MNIST initialized using LeNet), L1+W3 for Task 2 (on

Cifar10 initialized using AlexNet), L2+C1+L3 for Task 3 (on Ima-

geNet initialized using AlexNet), L2+C2+L3 for Task 4 (on ImageNet

initialized using VGG), C3+L3 for Task 5 (on Ubisound initialized

using LeNet), and L1+W3 for Task 6 (on Har initialized using LeNet),

respectively. We can see that although the combination of compres-

sion techniques found by AdaDeep cannot always outperforms a

single compression techniquein in all metrics, it achieves a better

overall performance in terms of the five metrics according to the

specific user demands.

5.3.3 AdaDeep over Different Mobile Devices. This experiment

evaluates AdaDeep across twelve different mobile devices (see Ta-

ble 3) using LeNet and UbiSound (D4) as the initial DNN and evalu-

ation dataset, respectively. The performance achieved by the initial

DNN is as follows: A = 95.1%, Sp = 25.2 MB, C = 28, 324, 864,

T = 31 ms, and E = 4.3 mJ.

As shown in Table 3, different devices have different resource con-

straints, which lead to different performance and budget demands
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Table 6: Performance of AdaDeep evaluated on different tasks/datasets using a RedMi 3S smartphone (Device 1), normalized

over the corresponding DNNs compressed usingW3. The compression techniquesmarked by ‘*’ are the combinations that have

not been proposed in related studies.

Task Compression techniques
Compare to the DNN compressed usingW3 technique

Sp C T E A loss

1.MNIST (LeNet) ∗C3 +W3 1.8× 1.5× 1.8× 1.3× −2.5%
2.CIFAR-10 (AlexNet) L1 +W3 4.6× 3.1× 2.3× 1.8× −4.9%
3.ImageNet (AlexNet) ∗L2 +C1 + L3 18.2× 2.1× 3.7× 1.2× −1.2%
4.ImageNet (VGG) ∗L2 +C2 + L3 38× 3.3× 19.8× 4.3× 0.1%

5.Ubisound (LeNet) ∗C3 + L3 3.2× 1.9× 1.6× 1.1× 0.4%

6.Har (LeNet) L1 +W3 2.1× 0.8× 0.8× 1.5× −2.6%

and thus require different coefficients μ1 ∼ μ4 in Eq. (8). Specifically,
we empirically optimize μ1 ∼ μ4 for different devices to be: μ2 =

max{ 4000−Ebattery4000 , 0.6}, μ1 = 1 − μ2, μ4 = max{ 8−SCache8 , 0.6},
and μ3 = 1 − μ4.

Performance. Table 7 summarizes the generated compression

combinations by AdaDeep and the performance of the correspond-

ing compressed DNNs. For the twelve different resource constraints,

DNNs generated by AdaDeep, which are initiated with the same

DNN model, can reduce the parameter size by 3.4× - 28.1×, com-

putation cost by 1.6× - 6.8×, latency by 1.1× - 3.1× and energy

cost by 1.1× - 9.8×, respectively, while incurring a negligible ac-

curacy loss (≤ 2.1%). The optimal combinations of compression

techniques found by AdaDeep differ from device to device. Fur-

thermore, AdaDeep finds some combinations that work the best

for a given mobile platform yet have not been proposed by previ-

ous works (e.g. C1+W3 for Device 1, C2+W3 for Devices 3, 4 and 5,

C3+W3 for Device 11).

The training process of AdaDeep includes three intertwined

phases: training the regularized DNN, re-training (such as in L1,
L2, L3) or fine-tuning (such as inW3) DNN for compression, and

training the DQN optimizer. Because the training time of the regu-

larized DNN is standard, we only quantify the total training time

required by the DNN compression and the DQN based selection on

different tasks, which is 3 hours on [MNNIST, LeNet], 10 hours on

[CIFAR-10, LeNet], 6.5 hours on [CIFAR-10, AlexNet], 3.5 hours

on [Ubisound, LeNet], 2 hours on [Har, LeNet], and 15 hours on

[ImaeNet, AlexNet], respectively, using two HP Z400 workstations

with two GEFORCE GTX 1060 GPU cards.

Summary.Overall,AdaDeep can automatically select the proper

combinations of compression techniques that meet diverse demands

on accuracy and resource constraints within 3.5 to 15 hours.We find

that the optimal compression strategy differs over tasks and across

mobile devices, and there is no one-fit-all compression technique

for all tasks and mobile devices. AdaDeep is able to adaptively

select the best compression strategy given diverse user demands. It

also uncovers some combinations of compression techniques not

proposed in previous works. Also, the sensitivity of the performance

metrics to different resources may vary for different choices of the

scaling coefficients (μ1 ∼ μ4).

6 RELATEDWORK

Our work is closely related to the following research.

6.1 Automatic Hyperparameter Optimization

Hyperparameters of DNNs, such as the number of layers and neu-

rons, the size of filters and the model architecture, are crucial to

the inference accuracy of DNNs. Common hyperparameter tuning

techniques can be categorized into parallel search, such as grid

search [5] and random search [4], and sequential search, such as

Bayesian optimization [38]. The grid and random search approaches

search blindly and thus are usually time-consuming. Bayesian ap-

proaches [39] [11] [40] automatically optimize the hyperparameters,

but can still be slow due to the intrinsically sequential operations.

In general, DNNs need to be compressed either during or after

training to be deployed on resource-constrained mobile devices,

due to their high complexity. Selecting compression techniques

can be viewed as a hyperparameter tuning process. Inspired by

state-of-the-art automatic hyperparameter optimization techniques,

AdaDeep is the first work to treat compression techniques as a new

hyperparameter to be tuned during training.

6.2 DNN Compression

The success and popularity of machine learning in mobile and IoT

applications [12][19][27][49] has stimulated the adoption of more

powered DNNs in mobile and embedded devices. Compression is

a commonly employed technique to trim down the complexity of

DNNs, which can be performed by reducing the weight precision, or

the number of operations, or both [41]. Various DNN compression

techniques have been proposed, including weight compression [6]

[16] [25], convolution decomposition [7] [18] [32], and compact

architectures [20] [31]. However, existing compression techniques

investigate a one-for-all scheme, e.g. how to reduce DNN complexity

using one compression technique, and do not consider the various

resource constraints across different deployment platforms.

AdaDeep enables an automatic selection of the best combination

of different compression techniques that balance the application-

driven system performance and the platform-imposed resource

constraints. Specifically, AdaDeep supports automatic selection

from three categories of mainstream DNN compression techniques.

6.3 Run-time DNN Optimization

Orthogonal to DNN compression, DNNs can also be optimized

at run-time to reduce their resource utilization and unnecessary

overhead on energy, latency, storage or computation. MCDNN [17]

pre-evaluates a set of compressed models with different execution
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Table 7: Performance of AdaDeep on different devices using the UbiSound dataset (D4), normalized over the corresponding

initial DNNs. The compression techniques marked by ‘*’ are the combinations that have not been proposed in related studies.

Device Compression techniques
Compare to initial DNN

Sp C T E A loss

1. Xiaomi Redmi 3S C1+W3 12.1× 2.1× 1.6× 1.1× 0.9 %

2. Xiaomi Mi 5S C2+L3 27.1× 3.6× 2.1× 1.2× 1.8 %

3. Xiaomi Mi 6 ∗C2+W3 13.1× 5.6× 1.9× 1.6× 1.1%

4. Huawei pra-al00 ∗C2+W3 12.7× 6.8× 1.4× 1.8× 1.2%

5. Samsung note5 ∗C2+W3 12.8× 4.1× 1.6× 1.8× 1.2%

6. Huawei iP9 C1+W3 13.0× 1.6× 1.6× 1.7× 0.9%

7. Sony watch SW3 C2+W2 6.4× 2.1× 1.5× 9.8× 1.6%

8. Huawei watchH2P L2+L3 27.8× 3.6× 3.1× 8.3× 2.1%

9. firefly-rk3999 L1+W3 13.2× 5.6× 2.6× 1.2× 1.8%

10. firefly-rk3288 C2+W1f 3.4× 4.8× 1.1× 1.3× 0.7%

11. Xiaomi box 3S ∗C3+W3 14.1× 4.1× 1.4× 1.1× 1.2%

12. Huawei box L1+L3 28.1× 1.6× 2.8× 1.2× 1.9%

overhead and selects one for each DNN that maximizes the accuracy

given total cost constrains of multi-programmed DNNs. However,

it only presents two cost reduction algorithms. LEO [13] designs

a low power unit resource scheduler to maximize the energy effi-

ciency for the unique workload of different tasks on heterogenous

computation resources. DeepX [25] designs a set of resource control

algorithms to decompose DNNs into different unit-blocks for effi-

cient execution on heterogeneous computation resources. EIE [15]

is a dedicated accelerator to execute sparse NN.

The above run-time optimization techniques can be applied on

top of the compressed DNN generated by AdaDeep to further im-

prove the efficiency of DNN execution on mobile devices. For ex-

ample, the current version of AdaDeep only leverages the CPU

on mobile platforms for DNN execution. The scheduler proposed

in [13] and [25] can be combined when extending AdaDeep to mo-

bile platforms with heterogenous resources. With proper hardware

support, the sparse NN output by AdaDeep can also be executed

faster using the accelerator in [15].

6.4 Automatic Control Techniques using DRL

Deep reinforcement learning (DRL) is widely applied in automatic-

play games to learn actions at different states that maximize a given

reward function [35]. For example, Mnih et al. [35] propose to

learn control policies from complex sensory inputs using a deep Q-

network (DQN). Liu et al. [33] leverage DQN to dynamically select

parts of a NN to execute according to different input resolution so

as to improve computational efficiency of multi-objective optimiza-

tion problems. Achiam et al. [1] solve the constrained optimization

problem with DRL by replacing the objective and constraints with

approximate surrogate, i.e., lower bound on policy divergence. How-

ever, the required operation of inverting the divergence matrix is in

general impractically expensive. Bello et al. [3] present a framework

to tackle the combinatorial optimization of sequential problems

with DRL and recurrent DNN.

To the best of our knowledge, AdaDeep is the first work to

leverage DQN for DNN compression optimization, considering both

application-driven system performance and platform constraints.

6.5 Automatic DNN Architecture Optimization

An emerging topic of interest for the deep learning community is

to automate the engineering process of deep model architectures:

using recurrent networks and reinforcement learning to generate

the model descriptions of deep models [50], or by transferring ar-

chitectural building blocks to construct scalable architectures on

larger datasets [51]. Those methods are purely data-driven, with

deep architectures composed with the goal to maximize the ex-

pected accuracy on a validation set. Lately, a handful of exploratory

works have emerged to correlate the model composition with do-

main knowledge. For example, Andreas et al. [2] constructed and

learned modular networks, which composed collections of jointly-

trained neural “modules” into deep networks for question answer-

ing, to simultaneously exploit the representational capacity of deep

networks and the compositional linguistic structure of questions.

Devin et al. [10] proposed a similar modular network by decompos-

ing robotic policies into task-specific and robot-specific modules,

to facilitate multi-task and multi-robot policy transfer. However,

none of those previous efforts have correlated their efforts with

DNN compression and energy efficiency.

7 CONCLUSION

This paper presents AdaDeep, an automatic optimization frame-

work that selects a combination of compression techniques that bal-

ance diverse user-specified performance goals and device-imposed

resource constraints. We systematically formulate the goals and

constraints on accuracy, latency, storage and energy into a unified

optimization problem, and leverage a deep reinforcement learning

based strategy to effectively find the feasible combination of com-

pression techniques. Evaluations on five widely used datasets and

twelve different mobile devices show that there is no one-fit-all

compression technique that meets the specific performance goals

and resource constraints. It also figures out some combinations of

compression techniques unexplored in previous DNN compression

research. AdaDeep is the first work that models DNN compres-

sion as a new hyperparameter for automatic tuning. In the future,
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we plan to investigate fully automatic hyper-parameter tuning to

optimize DNNs suited for mobile and embedded platforms.
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