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Abstract Multicore technology has the potential for drastically increasing produc-
tivity of embedded real-time computing. However, joint use of hardware, e.g., caches,
memory banks and on-chip buses makes the integration of multiple real-time applica-
tions into a single system difficult: resource accesses are exclusive and need to be se-
quenced. Moreover, resource access schemes of modern off-the-shelf multicore chips
are commonly optimized for the average-case, rather than being timing predictable.
Real-time analysis for such architectures is complex, as execution times depend on
the deployed hardware, as well as on the software executing on other cores. This will
ask for significant abstractions in the timing analysis, where the resulting pessimism
will lead to over-provisioned system designs and a lowered productivity as the num-
ber of applications to be put together into a single architecture needs to be decreased.
In response to this, (a) we present a formal approach for bounding the worst-case
response time of concurrently executing real-time tasks under resource contention
and almost arbitrarily complex resource arbitration policies, with a focus on main
memory as shared resource, (b) we present a simulation framework which allows for
detailed modeling and empirical evaluation of modern multicore platforms and ap-
plications running on top of them, and (c) we present experiments to demonstrate
the advantages and disadvantages of the presented methodologies and compare their
accuracy. For limiting non-determinism inherent to the occurrence of cache misses,
we particularly take advantage from the PRedictable Execution Model (PREM) as
discussed in recent works.
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1 Introduction

1.1 Motivation

These days, distributed computing is arriving at chip-level and electronic control units
are becoming increasingly multicored. This lures the integration of multiple embed-
ded (control) applications into a single processor, as their mutual independence feigns
the possibility of unlimited parallelism. However, race conditions which are imposed
by the usage of shared resources such as caches, memory banks or buses on chip
can easily become a threat to the timing correctness of the integrated real-time ap-
plications. As an example to this, one may think of a multicore system where at
least 2 cores use the same Level 2 (L2) cache. The software executing on the dif-
ferent cores may mutually over-write some of their cache entries. This in turn, will
significantly add to their execution times as code segments and data items must be
(re-)fetched from the main memory. However, this interference does not stop at the
level of caches. When fetching items from the main memory, cores need to wait for
getting access to the memory. As the Dynamic Memory Access (DMA) controller
might implement complex access patterns, on top of the non-deterministically arriv-
ing access requests, waiting times may also drastically add to the execution time of
the software. For these reasons, it might be the case that a (control) software misses
its assumed deadline and a control signal does not reach the actor in time. This in turn
can harm the overall system’s stability and provoke its damage or complete loss, not
to mention human casualties.
In such scenarios the challenge is to tightly bound response times of applications,
i. e. bound the time it takes the software to complete its (control loop) computation.
Obtaining precise bounds for each application is, however, far from trivial: waiting
times induced by the use of shared hardware are difficult to predict, since the ar-
bitration schemes for coordinating access to the shared hardware can be arbitrarily
complex, with a design meant to maximize overall throughput rather than serving the
real-time applications in a predictable way, cf. [27] for an example.
A common principle to resolve this issue is known as isolation. Isolation mechanisms
eliminate or strictly limit the interference among the competing applications, and al-
low for simplified and more accurate analysis methods of their worst-case response
times (WCRT). Examples of such strategies are memory partitioning schemes, e.g.
cache or memory colouring schemes [14] or time triggered schemes for partitioning
the (bus) access times [34]. Achieving timing predictability through isolation mech-
anisms can become, however, very wasteful and might not always be possible, e.g.,
hardware details are not exposed or modifiable. In such situation state-based real-
time modeling and exhaustive analysis techniques, appear to be useful, as they allow
the modeling of almost arbitrarily complex system behaviours. Contrary to analytic
methods, these techniques may not severely over-approximate a system’s behaviour,
as their operational semantics often reflect the modus operandi of the actual system.
But there is no free lunch as state-based modeling and analysis require explicit ex-
pansion of all possible system behaviours, which in turn may require to produce an
enormous number of system states to be analyzed. As their number can be expo-
nential in the number of states of the concurrent applications, state-based modeling
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and analysis techniques may not be applicable to systems of industrial size. In this
respect, analytic methods are better as they provide high scalability. But, on the down-
side, they sacrifice accuracy of the results by making conservative assumptions about
the system. This article will present an analysis methodology which aims at exploit-
ing advantages of both worlds, tailored to the modeling and analysis of multicore
control systems, where resource contention among concurrently executing real-time
applications can not be avoided.
For limiting the non-determinism inherent to the occurrence of cache misses in time,
we exploit the PRedictable Execution Model (PREM) as discussed in recent works.

1.2 Contribution

To balance computational effort and precision of results, past research has focused
on development of heterogeneous analysis methods, i. e. combinations of analytic
and state-based modeling and analysis techniques. This article exploits this line of
research, however, aims at achieving scalability and effectively analyzing multicore
systems with resource contention.
Exploiting a state-based modeling approach for bounding the WCRT of tasks de-
ployed on multicore systems with shared main memory is motivated by the aim of
decreasing the inherent pessimism of previously published analytic methods.
Along this line of thought, this paper presents the following contributions:

– A worst-case response time method based on Timed Automata which exploits
the so-called superblock model of the work of Schranzhofer et al. [31,36,37],
respectively the PRedictable Execution Model (PREM) of Pellizzoni et al. [29,
40,6]. This limits the time non-determinism inherent to the occurrence of cache
misses, respectively memory (data) fetches.

– A worst-case response time method that replaces some of the Timed Automata
models from the first approach with an abstract representation based on access
request arrival curves.

– Experimental results which show the advantages and disadvantages of the two
analysis methods and compare their accuracy when applied to six benchmarks
from the AutoBench group of the EEMBC (Embedded Microprocessor Bench-
mark Consortium) [1].

– We also show results based on a simulation framework to validate system settings
and to provide a lower bound on worst-case response time.

The results in this article extend our previous work [13] as it introduces (a) a novel
approach for deriving access request curves which simplifies the derivation and in-
creases the accuracy of the analysis results, (b) a novel simulation framework which
allows for validation of the analytic results, and (c) a benchmarking of the formal and
simulation-based analysis in order to compare their trade-offs.
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1.3 Organization

The remainder of this article is organized as follows: Sec. 2 presents the background
theory, i. e. , Real-time Calculus and Timed Automata. Sec. 3 - 5 presents our abstract
system model and introduces further abstractions for achieving scalability in the anal-
ysis without introducing too much pessimism. Sec. 6 introduces the formal modeling
of the system on top of Timed Automata, and details on steps for speeding up the
analysis. Sec. 7 presents the simulation framework and the findings of the formal
analysis and the simulation-based system evaluation. Sec. 8 concludes the article.

1.4 Related work

Performing timing analysis for multicore systems with shared resources is challeng-
ing as the number of possible orderings of access requests which arrive at a shared
resource can be exponentially large. Additionally, resource accesses can be asyn-
chronous such as message passing or synchronous such as memory accesses due to
cache misses. For the asynchronous accesses, the timing analysis needs to take into
account the arrival pattern of accesses from the processing cores and the respective
backlogs. In this case, traditional timing analysis methods such as Real-Time Calcu-
lus [39] and SymTA/S [16] can compute accurate bounds on the worst-case response
times (WCRT) of tasks and the end-to-end delays of accesses. For the synchronous
case, however, an access request stalls the execution until the access is completed,
i. e. an access increases the tasks’ WCRT. This is because, once an access request is
released, the task execution can not be preempted. Moreover, once service of an ac-
cess request starts, the latter can also not be preempted by other accesses. Bounding
the waiting times of tasks under these assumptions is far from trivial as one has to
take into account the currently issued accesses from other cores and the state of the
resource sharing arbiter. This paper is concerned with the second setting, i. e. the case
of synchronous accesses.
Schliecker et al. [35] have recently proposed methodologies to analyze the worst-
case delay a task suffers due to accesses to shared memory, assuming synchronous
resource accesses. The authors consider a system where the minimum and maximum
number of resource accesses in particular time windows are assumed to be known.
The arbiter to the shared resource uses a first-come first-serve (FCFS) scheduling
scheme and tasks are scheduled according to fixed priority. The authors evaluate the
approach with a system with few processing cores. Shortcomings of this method,
which lead to increased pessimism, are identified and addressed in the work of Dasari
et al. [12], which by following a similar approach, provides tighter bounds on the
worst-case delays that a task may experience due to interference on the shared bus to
the memory.
An alternative approach to analyzing the duration of accesses to a TDMA-arbitrated
resource is presented by Kelter et al. [18]. The proposed techniques is based on ab-
stract interpretation and integer linear programming (ILP). It statically computes all
possible offsets for access request within a TDMA arbitration cycle. This way the au-
thors aim at high precision of analysis results and keeping analysis times reasonable.
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As major shortcoming, all of the above works, do not consider complex scheduling
policies or systems with high number of processing cores. This shortcoming is the
major driver for the line of work presented in this article.

Schranzhofer et al. [31,36,37] have proposed methods for the WCRT analysis in
multicore systems where the shared resource is arbitrated according to FCFS, round-
robin (RR), TDMA or a hybrid time-/event-driven strategy, the latter being a combi-
nation of TDMA and FCFS/RR. Contrary to previous works, the proposed method-
ology is shown to scale efficiently. The analysis, however, uses over-approximations
which sometimes result in extremely pessimistic results, particularly in cases of state-
based arbitration mechanisms, like FCFS or RR. This shortcoming is of concern, as
modern multicore architectures tend to exploit complex, state-dependent behaviours.
The presented work exploits the same model of computation as Schranzhofer et
al. [31,36,37]. Moreover, it makes use of the concept of event arrival curves for
capturing the non-deterministic arrivals of service requests at the shared resource,
similarly as in the above works. The main difference lies in that our work exploits
a state-based, real-time modeling and analysis formalism. This way we ensure that
contrary to the earlier work of Schranzhofer, our modeling and analysis captures ac-
curately the behaviour of the state-dependent resource arbiters.

The presented analysis methodology is based on a combination of state-based and
analytic analysis technique. Such techniques have been introduced in [20,21] for the
combination of Timed Automata and RTC. The authors of [3] handle the case of syn-
chronous data-flow component models and RTC and [38] introduces the coupling of
parametric Timed Automata and RTC on top of a SMT-based analysis technique for
deriving regions of parameters for task activation patterns under which the system is
scheduled.
Our analysis for real-time tasks in a multicore setting is based on the aforementioned
coupling of Timed Automata (TA) [4] and RTC [20,21], where we exploit specific
concepts as implemented in the timed model checker Uppaal [7,8].
Yi et al. [28] were the first to use TA to represent a system resource (CPU or com-
munication element) as a scheduler model together with a notion of discrete events
that trigger the execution of real-time tasks on this scheduler. In this work they also
show that the feasibility problem of this extended model can be transformed into a
reachability problem for a standard TA, which allows one to check whether a system
is feasible for some fixed set of parameters, e. g. buffer sizes, delays, execution times
etc.
In the recent work [25] the basic idea has been extended for analyzing multicore ar-
chitectures and different resource arbitration policies. A similar approach has been
also followed by Gustavsson et al. in [15]. However, due to the state space explosion
problem, the illustrated techniques in both publications are limited and can only be
applied for few tasks and up to two cores. We overcome this by combining TA with an
analytic abstraction, specifically event curves, for the modeling and analysis of mul-
ticore systems and state-dependent arbiters for coordinating the access to a shared
resource.
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2 Background theory

2.1 Preliminaries

When analyzing and designing embedded systems with hard real-time constraints,
contemporary methods abstract over individual events and their individual process-
ing. Streams of signals, together with their processing software, denoted as tasks are
the main ingredients of an abstract system understanding, which in the past decade
has successfully served for establishing formal analysis methods in the design cycle
of embedded real-time systems. This abstract system understanding which will be
decisive for this paper can be summarized as follows.
Tasks are sharing computing devices and are communicating via (non-blocking)
FIFO-buffers of infinite capacity. A task consumes streams of uniform input signals
from the environment or some up-streamed set of tasks. As output, it emits streams
of uniform output signals, either to the environment or some down-streamed tasks.
Each task is statically mapped to a hardware unit. Consequently, each hardware
entity like a communication bus or an external cache is abstractly modeled by a
dedicated task.
Signal or event processing of a task is assumed to be organized in a first-in-first-out
manner as far as events from the same stream are concerned, i.e., events of the
same stream can neither overtake nor preempt each other. Please note that splitting
and merging of streams is possible. Processing the demand imposed by signals of
other types, i.e., signals processed by other tasks, but which are mapped to the same
device, is resolved according to some standard (scheduling) policy, e. g. earliest
deadline first (EDF), priority-based, Round-Robin (RR), First-In-First-Out (FIFO),
Time-Division-Multiple Access (TDMA) etc.
The maximal computation time, e.g., number of processor cycles, consumed by a
task for processing any of its input stimuli, is denoted as worst-case execution time
(WCET). Computing WCET is out of the scope of this paper, commercial products
like aiT [17] can be exploited for obtaining the core-local processing demand
requested by a task.

As one may have noted, the above definition solely considers the time a task
is active. However, in practice tasks often do not make progress with their compu-
tations as they are waiting for input stimuli from the environment, e.g., some data
item to be fetched from the main memory. This induces waiting times which heavily
depend on the environment, e.g., the behaviour of other tasks executing on different
devices, but also racing for the access to the same resource, e.g., the main memory.
The tight bounding of the waiting times of a task is the major issue of this work, as
in case of complex environments this is far from trivial. The maximal waiting time
of a task, together with its WCET yields its worst-case response time (WCRT). The
WCRT ultimately bounds any delay experienced by a signal processed by the task
under analysis. As long as it is below some threshold value, commonly denoted as
deadline, the system is said to be schedulable.
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2.2 Streams and their abstract representation

In this work we will exploit the concept of streams and arrival curves for abstractly
capturing the service requests sent to a shared resource.
A timed event is a pair (t, τ) where τ is some event label or type and t ∈ R≥0
some non-negative time stamp. A timed trace tr := (t1, τa); (t2, τb); . . . is a sequence
of timed events ordered by increasing time stamps, s. t. ti ≤ ti+1 for i ∈ N and
τa, τb ∈ Act with Act as a set of event labels or signal types. A possible infinite set
of traces referring to the same signal e is commonly denoted as (event) stream.
An arrival curve α is a pair of upper and lower curves (αlow, αup). It provides a
generic characterization of an event stream as follows [23,39]: Let R(t) denote the
number of events that arrived on the stream in the time interval [0, t), then an upper
and lower arrival curve satisfy the following equation

αlow(t− s) ≤ R(t)−R(s) ≤ αup(t− s) (1)

for all 0 ≤ s ≤ t, where in the following we use the notation∆ ∈ [0,∞) for address-
ing the time intervals t− s.
As each event from a stream may trigger behaviour within a down-streamed task,
arrival curves provide abstract lower and upper bounding functions αlow and αup

w. r. t. the resource demand experienced within time interval ∆. Furthermore, one
may note that for a given pair αlow and αup there might be a (possibly infinite) set
of traces of computation stimuli, namely all traces the counting function of which
satisfies Eq. 1.
Let αi := (αupi , α

low
i ) and αj := (αupj , α

low
j ) be two event-compatible arrival curves.

If αupi (∆) ≤ αupj (∆) and αlowi (∆) ≥ αlowj (∆) holds for all ∆ ∈ [0,∞) one says
αi is bounded by or included in αj and writes αi ⊆ αj . As pointed out above, each
arrival curve presents a potentially infinite number of traces. Hence αi ⊆ αj im-
plies that αi is over-approximated by αj , as all timed traces bounded by αi are also
included in the set of traces represented by αj . This is a crucial as it allows one to
replace a complex arrival curve αi by a less complex curve αj , but still guaranteeing
the validity of the deduced WCRT. Details on this feature can be found in [11,21].

2.3 State-based modeling and analysis of real-time systems

The complex behavior of arbiters coordinating the access to a shared resource calls
for modeling formalisms which are capable of capturing state-based behavior. For
convenience, this work employs TA [4] and the related model checking techniques as
implemented in tools such as Uppaal [7,8] or Kronos [10].

2.3.1 Timed automata (TA): basic concept

A TA [4] is a state machine extended with clocks. Instead of states one commonly
speaks of locations and instead of transitions one uses the term edges, which is useful
for separating the syntactic from the semantic level.
The location the TA currently resides in is denoted as active location. As main feature
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clocks can either be inspected or reset, where inspection takes place when checking
the validity of clock constraint associated with locations, denoted as location invari-
ants or when checking the Boolean guards of edges. A clock constraint gc is of the
following kind: gc := x ./ k|x − y ./ k|gc ∧ gc|¬gc with x and y as clocks, k ∈ Q
as a clock constant and the binary operator ./∈ {<,≤, >,≥,=}.
The basic construction can be extended with variables, where variables like clocks
can be inspected at any time and their values are changed upon edge traversals. The
used variable values must build a finite set, which, however, does not need to be
known on beforehand. The set can be constructed on-the-fly, i. e. during the state
space traversal.
An example of a network of interacting TA is depicted in Fig. 4.

We characterize the operational (or execution) semantic of TA informally as follows:

While a TA resides in a location, all clocks increase at the same speed and the loca-
tion invariants need to hold. Exceptions to this are so called urgent and committed
locations, marked with a u, c respectively. In these locations time is not allowed
to progress, i.e., urgent or committed locations have to be left instantaneously, in
zero time respectively.

Discrete event: an edge is enabled as soon as its (Boolean) guard evaluates to true.
An enabled edge emanating from the currently active location can be traversed (or
executed) which yields possibly a new active location. Clock resets are executed
when the enabled edge is traversed. The traversal of the edge is instantaneous,
i. e. it takes zero time.

The operational semantic as defined above allows one to derive an infinite state-to-
state transition system, where transitions either refer to the traversal of edge(s) or to
the progress of time. As clocks only evaluate to values from finitely many different
intervals, induced by the employed clock constants, and given that variables only take
values from a finite domain, the infinite state-to-state transition system of a TA can
be characterized by a finite graph. This finite representative which is known as region
graph is a symbolic representation of all possible behaviours of a TA. Hence validity
of timed and un-timed properties associated with system states or sequence of states
is decidable for TA [4]. One may note that modern timed model checkers incorporate
clock zones as they often result in a coarser partitioning of the clock evaluation space
in comparison to clock regions.

2.3.2 Hierarchic modeling: networks of TA

One may compose a set of TA into a network of cooperating TA. In such a setting,
clocks and variables can be shared among the different TAs, and dedicated sending
and receiving edges are jointly traversed which depend on the used synchronization
policy.
A state of a network of cooperating TA T is defined by the active locations, the ac-
tive clock regions and the values of the variables. With active locations we refer to
the locations the different (component) TA currently reside in, and with active clock
regions we refer to the set of constraints which contain the current clock evaluations.
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In the following we generically speak of TA, but referring to networks of TA as
specified as input to the timed model checker Uppaal. We briefly re-capitulate some
composition mechanisms which defines the interaction semantics of the (component)
TA put together into a network.
Edges are commonly labelled, and the labels are denoted as signals. The notation a!
refers to the sending of a corresponding a signal and the notation a? refers to the
reception of a signal a. The sending and receiving of a signal takes place once the re-
spective edges of a sending TA and a receiving TA are executed, i. e. the sender and re-
ceiver are different TA. The step of sending and receiving is atomic, i. e. synchronous,
and instantaneous. As a result, execution of an executable sending edge can take place
if and only if a receiving edge labelled with the corresponding signal can be executed
as well. An exception to this is the broadcasting of a signal which will be discussed
below. Likewise, a receiving-edge of a TA can only be executed if a corresponding
sending edge of another component TA is executable as well. Execution of sending
and receiving edges is done either according to a 1 : 1 or 1 : n-relation, where the
former situation is denoted binary synchronization and the later case as brodcasting.

Binary synchronization. Pairs of sending and receiving edges labelled with the same
signal identifier can only be executed jointly. If there are more than one sending
or receiving edge, all possible pairs of sending and receiving edges are scheduled
for being individually executed, one pair after the other and potentially yielding
different system states.

Broadcast. Execution of a broadcasting edge can take place in isolation, i. e. without
any receiving edge being executable. However, in case were are some receiv-
ing edges enabled, broadcasting edge and receiving edges have to be executed
together. Execution of the broadcasting edge in isolation can be avoided by ex-
ploiting location invariants, and incrementing a global variable. E.g., the target
location of a sending edge requires that a dedicated variable i is strictly larger
than 0. The increment of the variable takes place upon execution of the broadcast-
receiving edges. This way one may also enforce full synchronization among one
sender and K receivers.

For further details on the modeling mechanisms of the timed model checker Uppaal,
please refer to its online manual or related publications, e. g. [7,8]. The automata
decisive for the presented technique are depicted in Fig. 4 to 6 and more details
follow in Sec. 5 and 6.

2.3.3 Model checking: verifying key metrics of real-time systems

Determining if for a TA-based system modelM a dedicated property Φ holds is de-
noted as timed verification. The properties to be verified can either be associated with
states, as so called state or safety properties or with sequences of states. In this paper
we concentrate on the verification of state properties as it already allows to bound the
aforementioned waiting times. These quantities can directly be associated with clocks
or variables of the TA, s. t. states can be either labelled accordingly or one makes use
of an observer TA for guarding the respective property, e. g. a delay bound. Assert-
ing the invalidity of (bad) state properties is straight-forward: one simply annotates
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the locations of the TA-based models with dedicated labels, e. g. violation or any
clock, variable constraint respectively and checks the state space of the TA for the ab-
sence of a state containing the according location label. With Uppaal, the absence of
violating locations can be queried by the statement A[] not violation, which stands
for ’always invariantly’ not violation.
Verifying the validity of a delay bound is in fact more evolved: with an observer
TA one non-deterministically measures the delay for any pair of input and corre-
sponding output event by a clock x. The observer TA is a receiver of the respective
input and output signal, it resets clock x upon reception of the input signal and re-
sides in location pause until it receives the output signal. By querying if statement
A[](pause imply x ≤ D)] holds, with D as respective delay bound, one asserts that
the time elapsing between the input and the respective output event is bounded for
all such pairs of signals by D time units. It is straight-forward to use this mechanism
for finding an upper bound on the waiting time of a task as induced by the blocking
behaviour experienced when waiting for accessing a shared resource such as the main
memory.

3 Abstraction I: Phase-based model of computation

3.1 The superblock model for characterizing executables

This work considers systems consisting of N processing elements or cores, P =
{p1, . . . , pN}. To each core pj ∈ P we statically assign a set Tj , which are the
real-time tasks executing on pj . The tasks are assumed to be independent and require
access to a common (shared) resource, such as an interconnection bus to a shared
memory. For structuring the tasks, we exploit the so called superblock model [36].
This phase-based model of computation assumes that each task consists of a static
sequence of superblocks, which are non-preemptable execution units with known
worst and best case execution (computation) times, and upper and lower bounds on
the number of accesses to the shared resource. As we consider in-order execution on
the cores, a superblock’s execution is stalled every time an access request is pending,
i. e. the access request has been issued to the resource, but has not been served yet.
We assume a static schedule among all superblocks originating from different tasks,
but executing on the same core pj , i. e. all superblocks of a core follow a pre-defined
and static execution order. This order refers to preemptive or non-preemptive schedul-
ing at the task level. In case of non-preemptive scheduling, the superblocks are
ordered according to the sequence of tasks. With preemptive scheduling, each su-
perblock refers to the possibly partial execution of a task, the interleaved sequence of
superblcoks reflects than the interleaved execution sequence of the tasks of Tj .
Let the sequence of superblocks executing on core pj be denoted Sj =
(s1,j , s2,j , . . . , s|Sj |,j). This sequence is re-started after Wj time units, in the fol-
lowing referred to as processing cycle. The earliest starting time of a superblock si,j
within the k’th processing cycle is defined by ρi,j + (k − 1) ·Wj , where ρi,j is the
relative offset of i’th superblock on the j’th core. Analogously, its relative deadline
is denoted `i,j and the absolute deadline of superblock si,j within the k’th processing
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cycle is computed as ρi,j + (k − 1) ·Wj + `i,j .
Up to now, a superblock is fully described by its worst-case and best-case execu-
tion time, denoted as WCET and BCET respectively, and its upper and lower bounds
on the number of accesses to the shared resource. Because execution of superblock
si,j can only start once the preceding superblock si−1,j has been processed and
their worst-case response time (WCRT) is unknown, the relative starting time of
suberblocks are unknown too. Worst-case response time (WCRT) are unknown, as
as blocking times of a superblock’s execution at a shared resource are not known.
The blocking takes place when an access request has been issued, but it has not been
served at the shared resource yet.
In order to reduce the non-determinism w. r. t. the occurrence of access requests, su-
perblocks are further divided into three phases, known as the acquisition, the exe-
cution, and the replication phase. As an example, one may consider tasks and their
accesses to the main memory: during the acquisition phase a task reads the required
data from the main memory. The writing back of the modified/new data takes place
in the replication phase, after the non-interruptible computations of the execution
phase have been completed. This is a common model for signal-processing and con-
trol real-time applications. For our analysis, we consider in particular the dedicated
superblock model, in which resource accesses are performed sequentially in the ac-
quisition and the replication phase, while no accesses are required in the execution
phase. In this setting, we use the parameters µmin,{a,r}i,j and µmax,{a,r}i,j for address-
ing the minimum and maximum number of access requests in the (a)cquisition phase
and (r)eplication phase, respectively. For simplification, we consider the computation
time to initiate the accesses in the acquisition or replication phase, ex{a,r}i,j , as being
zero. If this time is too large, i.e., cannot be neglected, we divide the corresponding
acquisition or replication phases into several smaller acquisition/replication and exe-
cution phases so that eventually, each phase features either computation or accesses
only. The lower and upper bound on the required computation time in the (e)xecution
phase are denoted exmin,ei,j and exmax,ei,j , respectively. Note that the terms computa-
tion time and execution time are used interchangeably in the following and do not
include the time spent on resource accesses and blocking.
For a task with logical branches, the above phases and their lower and upper bounds
on the parameters may not be tight estimates. However, in any case, they are assumed
to be conservative, i. e. best-case bounds might be too optimistic and upper bounds
might be too pessimistic. The values can be derived either by profiling and measure-
ment for the case of soft real-time systems, as shown in [30], or when hard bounds
are necessary, by applying static analysis and abstract interpretation techniques, e.g.
in the style of [25] or by using commercial tools such as the aiT analysis tool [17].

3.2 The Superblock model in practice

For systems employing caches, we rely on the PRedictable Execution Model (PREM)
to carefully control when tasks access shared memory. Under PREM, a task’s su-
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perblocks1 are specially compiled such that during the acquisition phase, the core
accesses either main memory or last level cache to prefetch into private core cache
all memory required during the rest of the superblock. Then, during the subsequent
execution phase, the task performs computation on the previously-fetched data, with-
out incurring any private cache misses. Finally, as first proposed in [6], we assume
that during the final replication phase, write-backs can be forced for modified cache
lines in the private cache [37]. This ensures that modified data is written back to the
shared memory resource.

Two PREM implementations have been proposed in the literature. In the original
implementation [29], which we employ in the evaluation Section 7, PREM-compliant
tasks are produced through modifications of existing applications written in standard
high-level languages such as C. Certain constraints are present which limit the ap-
plications that can be made PREM-compliant. These constraints, however, are not
significantly more restrictive than those imposed by state-of-the-art real-time static
timing-analysis tools. The PREM implementation also uses a real-time C compiler
prototype built using the LLVM Compiler Infrastructure [22]. In the implementation
described in [26], a set of profiling techniques are employed to determine the set
of virtual memory pages accessed during each superblock. Selected pages are then
prefetched in cache. While this technique suffers a potential performance penalty
since it can only manage memory at the larger granularity of a 4KB memory page, it
has the benefit of requiring no code modifications.

Finally, one necessary consideration when using PREM is that each time a cache
line is prefetched, it has the potential to evict another cache line. This can cause two
types of problems. First, the new cache line may replace some other cache line which
was to be used in the upcoming execution phase (self-eviction). Second, it can evict
a cache line previously prefetched by another task that has been preempted (storage
interference). To prevent self-eviction, analysis of cache associativity and the cache
replacement policy can be used to compute an upper bound on the allowed mem-
ory footprint of a superblock [29]. Alternatively, memory regions can be locked in
cache [26], thus preventing unwanted evictions. Storage interference is avoided be-
cause in our model, once a superblock starts running its acquisition phase, it will run
to completion. Hence, no other task running on the same core can evict cache lines
of the executing superblock from private core cache. On the other hand, when a su-
perblock starts, we make no assumption on the state of the private cache, meaning
that in the worst-case, all cache lines used during the superblock might not be avail-
able in private cache and must be fetched from either shared cache or shared main
memory.

4 Abstraction II: From phases to an aggregated access request curve

This section presents how to derive an event arrival curve that bounds the resource
accesses stemming from the execution of a sequence of superblocks on a single core.
This is one of the fundamental abstractions which works for the scalability of the

1 In [29], the term predictable interval is used with the same meaning as superblock.
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presented analysis methodology, as this abstraction yields independence from the
number of cores in the system under analysis.

4.1 Deriving an access request arrival curve

A sequence of dedicated superblocks Sj , executing on processing core pj with pe-
riod Wj , accesses a shared resource. The possible resource access patterns depend
on the minimum and maximum number of access requests, µmini,j and µmaxi,j (sum
for acquisition and replication phase), and the minimum and maximum computation
time, exmini,j and exmaxi,j (execution phase), of each superblock si,j ∈ Sj , as well as
the order of superblocks in the sequence. In the following, we introduce a method to
represent abstractly the possible access patterns as an upper arrival curve. The latter
will provide an upper bound on the number of access requests that can be issued by
the corresponding core in any interval of time. The presented method provides tighter
bounds than previously published methods [31,13].

The arrival curve for a core pj is derived assuming that no interference is present
on the shared resource. Namely, the superblock sequence of pj is analyzed in isola-
tion, as if it had exclusive access to the resource. This is an overapproximation as it
maximizes the issued resource access requests w. r. t. the time interval domain. The
computation of the arrival curve is organized as follows.

4.1.1 Computation of an upper access request trace

In the time domain, different access request traces Rj can be derived for core pj
if one considers all possible instances of accesses and computation times within
the lower/upper bounds of the superblocks in Sj . Among all traces, we identify
the upper trace Ruj , namely the trace computed by considering the maximum num-
ber of accesses and the minimum computation time for all superblocks of Sj , i.e.,
Ruj (t) ≥ Rj(t), ∀t ∈ [0,∞).

It is clear that no other trace can represent more accesses at any time t ≥ 0 than
the suggested one. Let us prove this informally and for the purpose consider a single
execution of the superblock sequence in the interval [0,Wj). If we have computed
a trace with less than the maximum access requests for at least one superblock, the
computed trace will include less access requests in [0,Wj) than Ruj . On the other
hand, if a larger than the minimum computation time is considered for at least one
superblock, emission of the maximum number of access requests can be delayed in
time when compared with Ruj .

Note that since the core pj is examined in isolation, it is assumed that the inter-
arrival time between any two successive accesses issued by the core is equal to the
resource access latency, which we denote C. This way, every time pj emits an ac-
cess request, the access is assumed to be granted immediately, therefore being served
within C time units.

To illustrate the above with an example, we consider a single superblock specified
in Table 1. If the superblock is solely executed on a core, then the trace Ru of access
requests that this core can emit is given in Fig. 1, where µtot is the total maximum
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Table 1 Superblock and Shared Resource Parameters

Acquisition {µa,min, µa,max} {3,4}
Execution {exmin, exmax} {50,70}
Replication {µr,min, µr,max} {1,2}
Period W 250
Access Latency C 20

number of accesses in one period, i.e., in this example, µtot = µa,max + µr,max.
In particular, in the figure, in the interval [0, 80) Ru makes 4 steps which reflect the
maximum number of accesses in the acquisition phase of the superblock. Each access
takes the same access latency of C = 20 which corresponds to the flat segments of
length 20 after each step in Ru. These acquisition phase accesses are followed by
the minimum execution phase of length 50 which corresponds to the flat segment
in Ru in the interval [80, 130). In the interval [130, 170), Ru makes 2 steps which
correspond to the maximum number of accesses in the replication phase. They are
followed by a flat segment for the interval [170, 250) which is denoted as the gap
until the next execution of the superblock can start. Determining the length of this
gap for the purpose of our analysis will be described next.

. . .
t

t

W = 250

# 
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ce
ss

es

gap
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Ru(t)

μtot = 6

μa,max = 4 μr,max = 2
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1
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Fig. 1 Upper access request trace derived from the superblock parameters specified in Table 1

4.1.2 Lower bounding the gap between re-executions

In the computed upper access request trace, we can identify the gap (idle interval)
between the end of the last phase of Sj and the start of the next processing cycle. In
the example trace of Fig. 1, this gap can be computed as W − (µtot ·C+ exmin) as a
result of the isolation assumption. However, on the actual multicore system, where pj
competes against other cores for access to the shared resource, it is, in fact, possible
that the incurred delays will cause the execution of Sj to be extended closer to the
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end of the processing cycle. Therefore, in the general case, where no upper bounds
on these delays can be provided, we need to consider a zero-interval as the minimum
gap between two successive executions of Sj2.

This estimation can be refined in particular cases. For instance, when the resource
is FCFS- or RR-arbitrated, in the worst-case every access of Sj can be delayed by all
(N − 1) competing cores. Since access requests are blocking, every core can have
up to 1 pending access request at a time. Therefore, each access request of Sj can be
delayed by at most (N − 1) · C time units due to the interference of the other cores.
Therefore, a lower bound on the gap can be computed as follows:

gapmin =Wj − (N · C ·
∑

∀si,j∈Sj

(µa,maxi,j + µr,maxi,j ) +
∑

∀si,j∈Sj

exmaxi,j ) . (2)

4.1.3 Deriving the arrival curve

Derivation of pj’s access request arrival curve follows from the computed upper trace
Ruj and the lower bound on the gap gapmin. Before we proceed, we need to define
the shift operator . as:

(R . g)(t) =

{
R(t− g) , t > max(g, 0)
0 , 0 ≤ t ≤ max(g, 0)

(3)

The arrival curve that will be derived upper bounds the amount of access requests
that pj can emit in any time interval ∆. To safely obtain this bound, one has to con-
sider time intervals [t − ∆, t), with ∆ ≥ 0 and t ≥ ∆, which may start any time
after the first triggering of the superblock sequence Sj . Depending on the number of
processing cycles over which the intervals may span, we differentiate three cases for
the start and the end of the interval ∆, as illustrated in Fig. 2.

t

W

gapming

Case i)  ΔCase ii)  Δ

Case iii)  Δ

λΔ - λ

Fig. 2 Three cases for the position of the considered interval∆: i) within one processing cycle, ii) starting
in one processing cycle and ending in the next processing cycle, iii) spanning more than two processing
cycles

(i) 0 ≤ t−∆ ≤ t ≤Wj. Here, the intervals [t−∆, t) are contained entirely in one
processing cycle, as depicted in Fig. 2. The number of access requests in such
an interval is computed simply as: Rj(t) − Rj(t − ∆). An upper bound on the
access requests of this interval is computed by considering all possible positions

2 Provided that the system is schedulable, i.e., execution of a superblock sequence always finishes
within the current processing cycle.
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for the interval ∆ on the upper access request trace Ruj and taking the maximum
as follows:

αuj,i(∆) = max
0≤t

(Ruj (t)−Ruj (t−∆)) . (4)

(ii) 0 ≤ t−∆ ≤Wj ≤ t ≤ 2Wj. In this case, the intervals [t − ∆, t) span over
two processing cycles, as they start in one processing cycle and end in the next
one. An example is shown in Fig. 2. Again, the number of access requests in this
interval is calculated with: Rj(t)−Rj(t−∆).
Let us substitute: λ := t−Wj . ThenRj(t) can be expressed asRj(Wj)+Rj(λ).
In order to obtain an upper bound, we use the upper access request trace:
Ruj (Wj)+R

u
j (λ). The maximum total number of access requests in one process-

ing cycle is a constant, calculated as µtot,maxj =
∑
∀si,j∈Sj (µ

a,max
i,j + µr,maxi,j ),

i.e., we have Ruj (Wj) = µtot,maxj .
After the substitution, we can express Rj(t −∆) as Rj(Wj + λ −∆). In order
to obtain an upper bound, we need to consider the minimum gap between the
end of the superblock sequence in the first processing cycle and the start of the
superblock sequence in the next processing cycle. For the purpose, we use the
shifted to the right upper access request trace Ruj . g which takes into account the
lower bound on the gap, gapmin, from Eq. 2, where g is computed as follows:

g =Wj − (C ·
∑

∀si,j∈Sj

(µa,maxi,j + µr,maxi,j ) +
∑

∀si,j∈Sj

exmini,j )− gapmin . (5)

Considering all possible positions of the interval ∆ and taking the maximum, for
the arrival curve in this case we obtain:

αuj,ii(∆) = max
0≤λ≤∆

(µtot,maxj +Ruj (λ)− (Ruj . g)(Wj + λ−∆)) . (6)

(iii) 0 ≤ t−∆ ≤ kWj ≤ (k + 1)Wj ≤ t, k ≥ 1. In this case, the intervals [t −
∆, t) may span over more than two processing cycles, as shown in Fig. 2. We can
observe that this case is similar to the previous one, however, the end of the in-
terval ∆ is not in the next processing cycle, but can be in later processing cycles.
Therefore, knowing that the maximum number of access requests in one process-
ing cycles is µtot,maxj , and having K number of processing cycles between the
start and the end of interval ∆, we can use the results from the previous case to
obtain an arrival curve as follows:

αuj,iii(∆) = max
1≤K≤b ∆Wj c

{αuj,ii(∆−K ·Wj) +K · µmax,totj } . (7)

Combining the individual results of all three cases, we obtain the upper arrival
curve αuj that upper bounds all access request traces of sequence Sj executing on core
pj for any time interval ∆ ≥ 0. To this end, we take the maximum of expressions (4),
(6), and (7) as follows:

αuj (∆) = max{αuj,i(∆), αuj,ii(∆), αuj,iii(∆)} . (8)
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The arrival curve obtained by Eq. 8 is a safe upper bound on the access requests
that can be issued by a core, but it is more accurate than the upper bounds derived
with previous methods [31,13].

The method presented in [31] introduces inaccuracy of the computation of the
arrival curve because for simplicity it assumes zero inter-arrival time of access re-
quests from the core. The method presented here improves on this by considering
that the minimum inter-arrival time is bounded by the access latency C of the shared
resource.

Similarly, the method presented in [13] introduces inaccuracy because it considers
that the minimum gap gapmin can appear between all successive executions of a
superblock sequence, effectively shortening the processing cycle of the core, while
the method presented here always considers the correct processing cycle.

4.2 Deriving the interference curve of multiple cores

In Sec. 6 we will use an arrival curve to represent the access patterns of several
processing cores, when analyzing the WCRT of a particular superblock sequence
which is executed on a core under analysis (CUA). In this case, the interference
caused by all the other cores is taken as the sum of their individual arrival curves,
which are computed with Eq. 8 and by considering the cores in isolation. The sum
represents a safe over-approximation of the interference that the cores may cause on
the arbiter as we deal with monotone systems, where the number of requests received
by the arbiter for any given interval ∆ cannot exceed the sum of the issued requests
by the interfering cores.

The sum of the arrival curves of all cores except the CUA is mentioned in the
following as the interference curve α and it is computed as follows:

α(∆) =
∑

pj∈P\{pi(CUA)}

αuj (∆) . (9)

5 Abstraction III: From access request curves to state-based request generators

It is our aim to carry out system analysis based on Timed Automata and thereby pre-
cisely capture relevant implementation details of employed resource arbiters. Hence,
it is required to translate the aggregated access request curve from above into a state-
based request generator. Such a generator is capable of emitting all timed traces of
access requests as bounded by the upper and lower access request curve. Please note,
for the lower bound we use the trivial bound which is the constant 0-function.

To simplify the aggregated access request curve, we overapproximate it with the
following staircase curve:

αst(∆) := N +

⌊
∆

δ

⌋
(10)
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Fig. 4 TA-based implementation of Resource-access request event curve

where for soundness α(∆) ⊆ αst(∆) for all ∆ ∈ R+ needs to hold.3

In total this gives the following approach as illustrated in Fig. 3: we represent the
access requests of each core by an arrival curve αj(∆). The sum over the n arrival
curves represents then the combined access requests of the respective cores and the
obtained complex curve is safely over-approximated by a single staircase curve.

How to embed complex staircase arrival curve(s) was firstly presented in [19].
In this work we are limited to the case of a single staircase curve only. Arrival pat-
terns abstractly defined by a single staircase curve, here αst, can (exhaustively) be
generated with the TA shown in Fig. 4, for the proof refer to [20].

6 WCRT analysis under resource contention

For the state-based analysis of resource contention scenarios in multicores, the sys-
tem specification of Sec. 3 can be modeled by a network of cooperating TA. This
section presents the TA that were used to model the system components. We discuss

3 Instead of a single staircase curve, αst can also be composed from sets of staircase curves put together
via nested maximum and minimum operations[20,32]. This allows to model more complex curves, how-
ever, substantially adds to the complexity of the model checking problem to be solved when determining
the WCRT of the CUA.
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how the temporal properties of the system can be verified using the Uppaal timed
model checker and we introduce a set of abstractions to reduce the complexity of the
analysis.

6.1 Multicore system as a TA network

Modeling Concurrent Execution of the Cores. The concurrent execution of sequences
of superblocks on the different cores is modeled using instances of two TA, denoted
Scheduler and Superblock in the following. The implementation w. r. t. the Uppaal in-
put language is given in Fig. 5. In a system withN cores and a total ofM superblocks
executed on them, (N+M) component TA are allocated for modeling the concurrent
execution of superblocks. The employed pattern works as follows.

Each of the N instances of the TA Scheduler enforces the activation order of su-
perblocks on its associated core pj . Whenever a new superblock must be executed,
the respective instance of TA Scheduler emits a start[sid] signal, with start
being an array of channels and sid the index of the respective superblock. Due to
the underlying composition mechanism, this yields a joint execution of the start-
labelled edges by the respective instances of the TA Scheduler and the respective
instance of the TA Superblock. When the superblock’s execution is completed, both
components, i. e. Scheduler and Superblock, execute their finish-labelled edges,
where we once again employ an array of channels, here finish. Once the last su-
perblock in a processing cycle has terminated, the instance of TA Scheduler moves
to location EndOfPeriod, where it resides until the processing cycle’s period is
reached. After Wj time units since the activation of the first superblock of core pj ,
the Scheduler TA triggers a new execution sequence of superblocks w. r. t. to core pj .

Modeling Superblocks. A Superblock TA models the three phases of each superblock
and is parameterized by the lower and upper bounds on access requests and computa-
tion times. Once a Superblock instance is activated, it enters the Acq location, where
the respective TA resides until a non-deterministically selected number of resource
accesses within the specified bounds has been issued and served. Access requests are
issued through channel access[pid], whereas notification of their completion is
received by the arbiter through channel accessed[pid]. For location Acq, we
use Uppaal’s concept of urgent locations to ensure that no computation time passes
between successive requests from the same core, which complies with the specifi-
cation of our system model. Subsequently, the Superblock TA moves to the Exec
location, where computation (without resource accesses) is performed. The clock
x exec measures here the elapsed computation time to ensure that the superblock’s
upper and lower bounds, execmax and execmin, respectively, are guarded. The be-
havior of the TA in the following location Rep is identical to that modeled with
location Acq.

For the case of a single superblock in Sj , as shown in Fig. 5(a), clock x is used
to measure its total execution time. Checking the maximum value of clock x while
the TA is not in its Inactive location allows to obtain the WCRT of the whole
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superblock. With Uppaal this is done by specifying the lowest value of WCRT, for
which the safety property:

A[] Superblock(i).Rep imply Superblock(i).x <= WCRT

holds. The property implies that location Rep is never traversed with x showing
a clock value larger than WCRT. This way we ensure that for all reachable states,
the value of superblock si’s clock x is bounded by WCRT. To find the lowest WCRT
satisfying the previous property, binary search can be applied. Upon termination, the
binary search will deliver a safe and tight bound of the superblock’s WCRT. Similarly
a WCRT bound on a sequence Sj (a task) can be calculated by adapting the TA in
Fig. 5(a) to model more than three phases.
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Fig. 5 Superblock and Static Scheduler TA

Modeling Resource Arbitration. In this work, we consider arbitration policies of any
complexity for the shared resource. For the purposes of presentation, in the following
we focus on two event-driven strategies, namely first-come-first-serve (FCFS) and
round-robin (RR) and one time-driven strategy, namely TDMA. A hybrid event and
time-driven strategy, i.e., the industrial bus arbitration protocol FlexRay [2] has been
also modeled in [13], but its description is omitted here for brevity.

We assume that resource accesses are synchronous (blocking) and non-
preemptive, and that the access latency is equal to C once a request is granted by the
arbiter. The TA modeling the four aforementioned arbitration policies are depicted in
Fig. 6. Depending on the implemented policy, the respective model is included in the
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Fig. 6 TA representation of arbitration mechanisms

TA network of our system. In the following we briefly detail on the resource arbiter
models.

The FCFS and the RR Arbiter share a similar TA, depicted in Fig. 6(a). Both ar-
biters maintain a queue with the identifiers of the cores that have a pending access
request. In the case of FCFS, this is a FIFO queue with capacity N , since each core
can have at maximum one pending request at a time. When a new request arrives, the
arbiter identifies its source, i. e. the emitting core, and appends the respective iden-
tifier to the tail of the FIFO queue. If the queue is not empty, the arbiter enables
access to the shared resource for the oldest request (active() returns the queue’s
head). After C time units, the access is completed, and the arbiter removes the head
of the FIFO queue and notifies the Superblock TA that the pending request has been
processed.

For the RR arbiter a bitmap is maintained instead of a FIFO queue. Each position
of it corresponds to one of the cores and pending requests are flags with the respective
bit set to 1. As long as at least one bit is set, the arbiter parses the bitmap sequentially
granting access to the first request it encounters (return value of active()).

The TDMA Arbiter of Fig. 6(b) implements the predefined TDMA arbitration
cycle, in which each core has one or more assigned time slots. It is assumed that the
cores (Scheduler instances) and the Arbiter initialize simultaneously such that the
first slot on the shared resource and the first superblock on each core start at time
0 (assuming synchronized processing cycles among the cores). The arbiter’s clock
slot t measures the elapsed time since the beginning of each TDMA slot. When
slot t becomes equal to the duration of the current slot, the clock is reset and a new
time slot begins. According to this, a new access request from core eid is served as
soon as it arrives at the arbiter on condition that (a) the current slot is assigned to eid
and (b) the remaining time before the slot expires is large enough for the processing
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of the access. If at least one condition is not fulfilled, the pending request remains
’stored’ in the arbiter’s queue and is granted as soon as the next dedicated slot to eid
begins.

In all Arbiter TA, new access requests can be received any time, either when the
queue is empty or while the resource is being accessed. Multiple requests can also
arrive simultaneously.

6.2 With an access request generator to a reduced number of TA

A network consisting of N Scheduler, M Superblock and 1 Arbiter TA is used to
model the multicore architectures under analysis. By verifying appropriate temporal
properties in Uppaal, we can derive WCRT estimates for each superblock or sequence
of superblocks that is executed on a processing core. However, scaling is related to the
number of TA-based component models as the verification effort of the model checker
depends on the number of clocks and clock constants used in the overall model, not
to mention any variables. In the following sections, we propose safe abstractions for
achieving a better analysis scalability.

In the proposed abstractions, only one processing core pi (core under analysis,
CUA) is considered at a time, while the behaviour of all remaining cores, which
compete against it for access to the shared resource, is abstracted (not ignored). To
model the access requests of abstracted cores, we use arrival curves. This way an
arrival curve α capturing the aggregate interference pattern of the abstracted cores
can be constructed (as in Eq. 9) and then, modeled using TA in the form of an access
request generator (Sec. 5). The overall system is modeled as a network of TA which
contains one instance of the TA Scheduler and |Si| instances of the TA Superblock
(Fig. 5), one instance of the TA Arbiter (Fig. 6), and the TA implementing the access
request generator (see Fig. 4). We over-approximate the access request curve α of the
cores by a single staircase curve αst only. The staircase function is selected so that
(a) it coincides with the original α on the long-term rate and (b) it has the minimum
vertical distance to it. The access request generator emits then traces of interfering
access requests bounded by αst. Emission of those requests can be restricted further,
given that at any time the amount of pending requests in the system cannot be greater
than the number of cores N .

Overall, the discussed abstraction yields a model whose number of component
TA is independent of the number of cores of the system under analysis. To illustrate
the reduction in the size of the TA-based system specification, one may consider
a system with 32 cores, each executing a single superblock only. If all cores were
modeled individually, i. e. each by its own component TA, the complete system model
would consist of 65 TA: 32 instances of the TA Scheduler, 32 instances of the TA
Superblock, and one instance of the TA Arbiter. Therefore, the system model would
contain in total 97 clock variables and 128 synchronization channels. By applying
the above abstraction, one obtains a system model which contains five component
TA only: one instance of the TA Scheduler, one instance of the TA Superblock, one
instance of the TA Arbiter, and one instance of the Request Generator which consists
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of two TA. In total, this yields a system model with 5 clocks and 6 synchronization
channels.

Substitution of the (N − 1) Scheduler and the (M − |Si|) Superblock TA
instances of the abstracted cores with just a pair of interference generating TA is
expected to alleviate significantly the verification effort for the WCRT estimation
of the superblocks executing on CUA (core pi). This comes with the cost of
over-approximation, since the interference arrival curve α provides a conservative
upper bound of the interfering access requests in the time-interval domain and ast

over-approximates it. As shown in Sec. 7, though, the pessimism in the WCRT
estimates for the superblocks of CUA is limited.

6.3 Adaptations to improve scalability

Besides the basic abstraction steps, i. e. the dedicated superblock model of execution,
the interference representation with arrival curves, and the modeling of the latter with
TA, further abstractions and optimizations of our system specification can be consid-
ered. We briefly discuss these in the following, such that the experimental results of
Sec. 7 are reproducible:

1. For system models, where execution on all cores is modeled explicitly and the
resource is FCFS or RR-arbitrated, the state space exploration for a superblock’s
WCRT can be restricted to the duration of one hyper-period of the cores’ pro-
cessing cycles. The hyper-period is defined as the least common multiple of the
cycles’ periods (lcm(W1, · · · ,WN )) and within its duration all possible inter-
ference patterns are exhibited. Therefore, deriving a superblock’s WCRT by ex-
ploring the feasible scenarios in this time window only is safe. Note that a sim-
ilar simplification can be applied in case of TDMA- arbitrated resources, too, if
the hyper-period is redefined to account for the period of the arbitration cycle
(lcm(W1, · · · ,WN , Θ), where Θ denotes the length of the arbitration cycle).

2. In system specifications, where execution on some cores is abstracted and the re-
source is FCFS or RR-arbitrated, the Superblock TA can be simplified to model
not periodic execution, but a single execution. Since all feasible interference
streams bounded by αst can be explored for the time interval of one superblock
execution, the WCRT observed during this interval is a safe WCRT bound. This
simplification also eliminates the need for including the Scheduler and the re-
maining Superblock instances of the CUA in the TA system model. The same
can be applied to systems with a TDMA arbiter which requires to enumerate and
model all possible offsets for the starting time of the superblock within the re-
spective arbitration cycle.

3. To bound the WCRT of a superblock, one can add the WCRT of the individ-
ual superblock phases. Similarly as before, we can model single acquisition or
replication phases and explore all interference streams bounded by αst for the
time interval of one phase execution. Based on the arrival curve properties, the
obtained WCRT bound for each phase is safe. For the execution phase, one can
simply consider the maximum execution time and add this to the previous sum.
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The total WCRT of the superblock (sum) of the individual phases can be more
pessimistic than the WCRT found when the sequence of superblocks is analyzed
in a single step. This is because it may not be possible for all phases to exhibit
their WCRT in a single superblock execution. Nevertheless, this simplification
reduces the verification effort, by dividing the original problem into smaller ones,
each analyzed independently.

4. In system models with a TDMA resource arbiter, the interference from the com-
peting cores can be ignored (not modeled) due to the timing isolation that a
TDMA scheme offers. Namely, for deriving a superblock’s WCRT, the model
checker needs to consider all possible relative offsets between the arrival of CUA’s
access requests and the beginning of its dedicated slot in the arbitration cycle. The
interference from the remaining cores does not affect the superblock’s WCRT.

5. In system models with a FCFS or RR resource arbiter, granularity of communi-
cation between the Access Request Generator and the Arbiter TA may become
coarser, by letting access requests arrive in bursts at the arbiter. For this, the inter-
ference generating TA can emit requests in bursts of b, where b is a divider of the
maximum burst sizeNl in Eq. 10 and b ≤ N−1. The arbiter TA can be adapted to
store the requests and serve them like in the original system (as if they were emit-
ted one by one). New bursts of interfering requests can be generated any time
after the previous b requests have been served. This optimization decreases the
need for inter-automata synchronization and also the number of explored traces
below αst, since the inter-arrival times among the requests in a burst are no longer
non-deterministic, but fixed to 0. The traces that are not explored could not cause
worse response times for CUA’s superblocks than the ones with the bursty ar-
rivals. This is because, if some of the b interfering access requests arrived later
(non-zero inter-arrival time), the next access of CUA would suffer equal or less
delay compared to the bursty case. Specifically, if the ”delayed” interfering re-
quests arrived still before the next request of CUA (FCFS arbitration) or before
the turn of CUA (RR arbitration), the delay for serving the latter’s request would
be the same as if the interfering requests had arrived in a burst. Otherwise, the
”delayed” interference requests would not be served before CUA’s request, thus
reducing its response time. Therefore, the omission of the non-bursty traces has
no effect on the correctness or tightness of the WCRT estimates.

6. The Access Request Generator requires to reset its clock once it has emitted the
maximal number of resource access request at a single point in time, i. e. it has
produced a burst of access requests. It is safe to omit this clock reset, since the
Access Request Generator could simply emit more events than bounded by the
original curve α. E. g. any Access Request Generator derived from the TA of Fig.
4 could release BMAX events just before clock x expires; successive traversals of
edge “event?”. Without resetting clock x upon theBMAX’th travesal, one could
actually release more access requests once clock x expires, i. e.x == Delta
holds. This yields emissions of more requests than bounded by the original α,
which in turn could introduce pessimism into the analysis. On the other hand, it
might help with lowering the state space explosion, as it reduces the number of
clock resets. In the case of our model, we can not notice any additional pessimism
w. r. t. the worst case response time of the task. That is because the maximum
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number of pending requests is not derived from BMAX , but from the number of
cores in the system. Additional resource access requests can only be issued at the
rate of service experienced at the shared resource.

7 Evaluation

In this section, we provide an in-depth evaluation of the presented techniques, where
we consider systems with two to six cores, on which a set of industrial benchmarks
is executed. The cores access the main memory in a round-robin fashion when cache
misses occur. We model the respective systems either fully with TA (FTA) or a com-
bination of TA and arrival curves (ATA) and compare the scalability of the two anal-
ysis methodologies and the accuracy of the obtained results. We further compare our
derived analysis bounds with results obtained from architectural simulations. While
simulations by definition might fail to reveal the real worst-case scenario, they are
nevertheless useful in validating the overall system settings and providing a lower
bound on worst-case response time analysis to compare with the safe upper bound
provided by analysis.
A comparison of the formal modeling and analysis techniques FTA and ATA with
other state-of-the art analytic approaches for bounding the WCRT in the setting of
phase-structured tasks was already presented in [13].
We base our evaluation on a simulated multicore platform using private LVL1 and
LVL2 caches and shared main memory. The Gem5 [9] architectural simulator is used
to execute selected benchmarks and obtain superblock parameters for accesses to
main memory. The simulator is configured as follows: in-order core based on x86
instruction set running at 1 GHz; split LVL1 cache of 32kB for instruction and 64kB
for data; unified LVL2 cache of 2MB; cache line size is 64 Bytes; a constant time
of 32 ns for each memory access. Section 7.1 provides more details on the evaluated
benchmarks. Section 7.2 describes our multicore simulation settings and presents
comparative results among the simulation and the two suggested analysis methods.
Finally, Section 7.3 evaluates the accuracy of our analysis by comparing WCRT esti-
mates obtained with ATA to conservative WCRT bounds that can be derived (without
model checking) for the considered arbitration policy.

7.1 Benchmarks and determination of superblock parameters

To evaluate the proposed techniques, we considered six benchmarks from the Au-
toBench group of the EEMBC (Embedded Microprocessor Benchmark Consor-
tium) [1] and ported them to PREM. We examined benchmark representing streaming
applications that process batches of input data and produce a stream of correspond-
ing output. Specifically, the six benchmarks we used from the AutoBench group were
a2times (angle to time conversion), canrdr (response to remote CAN request), tblook
(table lookup), bitmnp (bit manipulation), cacheb (cache buster) and rspeed (road
speed calculation). Ideally more benchmarks would have been examined, however, as
detailed in Section 3.2, making a benchmark PREM-compliant is a time-consuming
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operation. Also note that a similar approach to benchmarking was employed in past
papers using PREM, in particular [29,40,6].

Each benchmark in the EEMBC suite comes with a sample data file that rep-
resents typical input for the application. The benchmark comprises required initial-
ization code, followed by a main processing loop. Each iteration of the benchmark
algorithm processes a fixed amount of input data, and the number of iterations is se-
lectable. We configured the number of iterations such that each benchmark processes
its entire sample data. Then, we compiled the whole main loop into a superblock; in
this way, every periodic execution of the resulting task consists of a single superblock.
During the acquisition phase, the whole sample data of the benchmark, static data and
code of the main loop are loaded in cache; in the execution phase, the main loop is
repeated for the selected number of times; and finally, during the replication phase all
output data is written back to main memory. Note that we do not include the initial-
ization code of the benchmark in the superblock, since such code must be run only
once at the beginning of the benchmark, and is not executed as part of a periodic task.

Table 7.1 provides the derived characterization for the six benchmarks run on
our architectural simulator. To obtain valid measures for our superblock model, each
benchmark is run in isolation on one core, with no other computation in the system.
We provide the number of iterations for each benchmark. We report the maximum
number of accesses µmax,a, µmax,r for the acquisition and replication phases, the
maximum execution time exmax,a (ns) for the acquisition phase, as well as minimum
and maximum execution times exmin,e, exmax,e (ns) for the execution phase. Note
that in our simulations, the replication phase is implemented by flushing the cache
content before the next superblock starts, hence the cache is empty at the beginning of
each acquisition phase. Since furthermore the amount of processed and modified data
is constant for a given number of benchmark iterations, we have µmin,a = µmax,a

and µmin,r = µmax,r, i.e., the number of accesses in the acquisition and replication
phases is constant. Also note that the largest working set in the table (see tblook) is
around 271 * 64 Bytes-per-cacheline = 17,344 bytes, which can fit in LVL2 cache for
commonly used processors. The number of accesses during the execution phase is
zero. The execution time during the acquisition phase is also constant, and dependent
on the number of instructions required to prefetch µmax,a cache lines. We do not re-
port the execution time of the replication phase since a single instruction can be used
to flush the cache independently of its content. Finally, the minimum and maximum
lengths of the execution phase depend on the input data, and are thus computed as
follows: we first measure the minimum and maximum execution time for a single iter-
ation of the benchmark. Then, we obtain exmin,e, exmax,e by multiplying the number
of benchmark iterations by the measured minimum and maximum per-iteration time,
respectively. Since the provided sample data are designed to test all code paths in the
algorithms, we believe that this way, we sufficiently approximate the minimum and
maximum execution time bounds that would be computed by a static analysis tool.
For an in-depth comparison of PREM versus normal (non-PREM) execution, we re-
fer the interested reader to [29,40]; in general, the number of cache line fetches under
PREM is slightly higher than the number of fetches under non-PREM execution, but
this overhead is relatively low for most benchmarks.
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Benchmark Iterations PREM
µmax,a µmax,r exmax,a exmin,e exmax,e

a2times 256 129 26 1561 215552 296448
canrdr 512 186 26 1821 110080 1047552
rspeed 256 90 23 1094 92160 163328
tblook 128 271 23 2453 103424 795648
bitmnp 64 170 47 1678 4669760 5173056
cacheb 32 100 33 1025 8704 11872

Table 2 Benchmark Characteristics

7.2 Evaluation results: FTA and ATA versus simulation

We simulated the parallel execution of two to six tasks on an equal number of cores,
where each task is composed of a single superblock, based on one of the described
benchmarks. We use simulations to provide a meaningful lower bound to the worst-
case response time of each task considering contention for access to the shared re-
source, and to validate our model. Our resource simulator uses traces of memory
requests generated by running each benchmark in isolation on Gem5, as described in
Section 7.1. The simulator keeps track of simultaneous requests by multiple cores,
and arbitrates accesses to the shared resource based on round-robin arbitration. Since
we assume an in-order model where the core is stalled while waiting for main mem-
ory, the simulator accounts for the delay suffered by each memory access by delaying
by an equivalent amount all successive memory requests performed by the same core.

For each scenario, we simulate a synchronous system, i.e., all tasks are activated
for the first time simultaneously. Each task is then executed periodically with a given
period, shown in Table 3, on its dedicated core. The task periods are selected so that
each task can complete execution within them. Namely, a superblock’s period is at
least equal to its conservative WCRT estimate:

WCRTcons = (µmax,a + µmax,r) ·N · C + exmax,a + exmax,e (11)

which assumes that every access experiences the worst possible delay, i.e, N · C un-
der RR resource arbitration (e.g., for N = 6 and C = 32ns, we have WCRTcons =
327769 ns for benchmark a2times). As described in Section 7.1, in both the simu-
lations and the analytical model we allow the execution time of the execution phase
to vary between exmin,e and exmax,e. Therefore, we decided to simulate each sce-
nario until the task with the largest period has executed 2000 times, and we record
the maximum response time for each task during the simulation; the length of the
execution phase of each job is randomly selected based on a uniform distribution in
[exmin,e, exmax,e]. For each scenario, we also apply the proposed WCRT analysis
methods, first the one where the system is fully modeled with TA (FTA) and then, the
one where a part of the system (interfering cores) is abstractly modeled with arrival
curves (ATA). Note that the additional abstractions of Sec. 6.3 are also applied when-
ever possible. Table 4 presents the WCRT of each task as observed during simulation
as well as the difference among this value and the corresponding WCRT with the two
analysis methods. The difference is defined for each task as:

Difference = 100 · WCRTanalytic −WCRTsimulation
WCRTsimulation

. (12)
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Table 3 Benchmark Periods for Simulation

Benchmark Period (ns) Benchmark Period (ns)
a2times 360000 tblook 900000
canrdr 1350000 bitmnp 5400000
rspeed 200000 cacheb 40000

Table 4 WCRT results of EEMBC benchmarks: FTA vs. ATA vs. simulation for RR arbitration

Cores Benchmark Simulation FTA ATA
Set WCRT (ns) Difference (%) Verif. time Difference (%) Verif. time (sec)

2 a2times 305540 0.28 2.4 sec 0.78 1.5
canrdr 1058020 0.09 2.5 sec 0.29 1.9

3
a2times 308431 0.51 16 min 1.44 2.7
canrdr 1060294 0.15 16.25 min 0.43 3.3
rspeed 172712 0.45 15.25 min 1.48 1.8

4

a2times 312839 0.64 79.9 hrs 1.60 3.6
canrdr 1066062 - - 0.78 5.2
rspeed 175588 0.85 12.2 hrs 1.88 2.2
tblook 819105 - - 0.44 7.0

5

a2times 315704 - - 2.25 4.6
canrdr 1068112 - - 1.42 6.6
rspeed 178424 - - 2.29 2.8
tblook 822330 - - 1.13 10.8
cacheb 28666 - - 19.22 4.0

6

a2times 319802 - - 2.49 5.0
canrdr 1074540 - - 1.45 7.2
rspeed 181249 - - 2.69 3.4
tblook 827793 - - 1.43 14.4
cacheb 32251 - - 19.17 4.4
bitmnp 5202608 - - 0.26 11.1

Table 4 presents also the time required to verify one WCRT query with the Uppaal
timed model checker in each case. Note that the total verification time will be a mul-
tiple of the presented time because of the binary search performed to specify a tight
response time bound. All verifications were performed with Uppaal v.4.1.7 on a sys-
tem with an Intel Xeon CPU @2.90 GHz and 128 GB RAM. The experimental results
should be reproducible also on machines with a lower RAM capacity (e.g., 8 GB). In
particular, the model checker required up to 4.3 GB RAM for the FTA analysis, for
systems with 2-3 cores. For the WCRT analysis of benchmarks a2times and rspeed
in the 4-core scenario, the RAM utilization surpassed 25 GB. This is the only case,
where model checking for the FTA method could fail to complete on a machine with
restricted RAM capacity. Respectively, model checking for the ATA analysis required
several tenths of MB in most cases. The peak RAM consumption was observed when
verifying the WCRT of benchmark bitmnp in the 6-core scenario and was equal to
1.2 GB.

The FTA analysis method could be applied to systems with up to 4 cores. For
tasks canrdr and tblook in the 4-core scenario as well as for the 5-core and 6-core
scenarios, verification of a WCRT query with Uppaal required more than 120 hours
and was, thus, aborted. Nevertheless, for the scenarios where the FTA method could
be applied, the obtained WCRT results are very close to the ones observed during
simulation. The maximum deviation between the corresponding values is 0.85%,
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confirming that our modeling is a good reflection of the PREM execution method. The
reason is as follows: PREM gives phase structured executables, respectively compiled
code, and we used this code with the simulator. Therefore, it can actually be expected
that higher timing determinism allows the upper bounding to be close to the measured
results of the simulation. This also gives that in the following, the comparison of ATA
and simulation is almost as decisive as the direct comparison between FTA and ATA.
This is particularly of value for the cases where the FTA method runs out of memory
or run-time.

Note that the scalability of FTA is already improved compared to earlier model
checking-based analysis methods, e.g., [15,25], in which analysis did not scale effi-
ciently beyond 2 cores for event-driven resource arbitration schemes. This improve-
ment can be attributed to our first proposed abstraction, namely the dedicated su-
perblock structure of the tasks.

On the other hand, the ATA analysis method scales efficiently since the verifi-
cation of each WCRT query can be completed in few seconds in all cases, almost
independently of the number of cores in the system. One can observe that the ob-
tained WCRT results are slightly more pessimistic than the ones derived with FTA,
as the differences to the simulation observations are now larger. However, the pes-
simism of ATA compared to FTA is limited, reaching at maximum 1.03% for task
rspeed in the 3-core and the 4-core scenarios.

How can the comparable results of the FTA and ATA methods be explained?
The methods produce the same WCRT for a core under analysis if the system under
analysis operates close to the conservative case. E.g., for RR arbitration of DRAM,
each core uses its assigned slot for accessing the resource while an access of the core
under analysis is pending. Likewise with FCFS-based resource arbitration, the input
buffer is always filled with N − 1 requests upon the arrival of a request from the core
under analysis; assuming that there are N cores in the system.

It appears that with the considered benchmarks most of the time the system shows
such a behaviour and both methods produce comparable results (see also discussion
in Sec. 7.3). However, in cases, where the ”real” system exhibits larger intervals be-
tween the access requests from the different cores, the ATA method can become ex-
tremely pessimistic. In reality, access requests may be not so bursty, whereas with the
ATA method requests are placed on the resource in a bursty fashion. This is due to
(i) the construction of the interference curve α (sum of individual curves, Sec. 4.2),
which provides a conservative upper bound on the interfering access requests, (ii) its
over-approximation by the staircase function αst, and (iii) the behavior of the access
request generator (Sec. 6.2), which emits interfering requests non-deterministically
over time, thus enabling the exploration of certain request streams that are bounded
by αst but may never be encountered in the real-time system.

The maximum difference between the ATA-derived WCRT and the corresponding
simulation-observed WCRT is observed for task cacheb in the 5-core scenario and is
equal to 19.22%. As pointed out above, a similar picture could be expected also
when comparing the FTA and ATA method, as FTA and simulation produce similar
WCRT due to the code structuring. The results of Table 4 show, however, also that
the difference (pessimism) is limited since in most cases, the ATA-derived WCRT are
only up to 2.5% greater than the corresponding simulation results.
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Fig. 7 WCRT of EEMBC benchmarks: ATA vs. Conservative Bound vs. Simulation for RR arbitration

This allows us to conclude that the gain in scalability, obtained by the abstraction
of a part of the system with arrival curves, does not compromise the accuracy of the
WCRT. The topic of accuracy is discussed further in the next section.

7.3 Evaluation results: ATA versus conservative WCRT estimation

Fig. 7(a)-7(f) illustrate the WCRT estimates of each EEMBC benchmark for each
scenario (different number of concurrently executed benchmarks), as obtained by
(i) the ATA analysis methodology, (ii) the simulation environment presented in Sec-
tion 7.2, and (iii) a conservative WCRT estimation under RR resource arbitration,
given by Eq. 11. The last estimation assumes that every single access of a core under
analysis is delayed by all interfering cores in the system. This conservative, yet safe
assumption enables modeling RR through a TDMA scheme, where each core has one
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slot of length equal to C (access latency) in each arbitration cycle. Independently of
whether the interfering cores emit accesses within a cycle, the corresponding slots
cannot be used by the CUA, which has to wait for a whole cycle interval between any
two successive accesses.

Based on the depicted results, the difference between the ATA estimates and the
observed through simulation WCRT varies between 0.26% (bitmnp, 6 cores) and
19.22% (cacheb, 5 cores). Respectively, the difference between the ATA and the con-
servative WCRT estimates varies between 0% (benchmarks a2times, rspeed, cacheb,
bitmnp) and 1.8% (tblook, 6 cores). The equality of the ATA and the conservative
estimates for some benchmarks is a special case stemming from the nature of the
considered benchmarks. Particularly, the six benchmarks (i) exhibit similar structure
with a burst of hundreds of access requests at the beginning of their execution and
(ii) are assumed to start synchronously (at time 0) among all cores. This results in
massive interference on the shared memory at the beginning of each hyper-period,
where the memory accessing (acquisition) phases of the benchmarks overlap. Conse-
quently, for the considered case study the exhibited interference at runtime is closely
described by the conservative assumption mentioned above. A larger deviation be-
tween the two estimates would be expected if the benchmarks started their execution
after given phases, so that their acquisition phases would only partially (or not at all)
overlap.

In general, for more complex arbitration policies than RR, like FlexRay [2], the
derivation of a conservative bound is not trivial and can be only based on overly
pessimistic assumptions (e.g., no access provided during the dynamic FlexRay seg-
ment) due to the complexity of modeling the state of the arbiter (see [13]). Under
such arbitration scenarios, we expect the ATA WCRT to be more accurate than any
conservative estimates4. The same applies also in cases, where the initial phases of
the benchmarks (here, 0) are synchronized such that the interference on the memory
path is reduced. If the interference arrival curves are computed by considering the
initial phases, the ATA WCRT will be refined as opposed to the conservative bounds,
which do not reflect this information.

8 Conclusion

8.1 Summary

The article presented a formal analysis and a simulation-based framework for the
worst-case response time analysis of concurrently executing real-time tasks on
resource-sharing multicore platforms. In such settings, cache misses at core level
may stall the cores’ local computation, while cache block fetching times from the
main memory may vary extremely. This variation is due to the fact that fetch re-
quests issued from other cores need to be processed at the shared main memory at
the same time. Moreover, the resource arbitration scheme used for the main mem-
ory is commonly designed for speeding up the average case, rather than being timing

4 Case studies with FlexRay are omitted here for brevity, but can be found in [13].
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predictable. In a nutshell, the precise bounding of the accumulated waiting times ex-
perienced by a real-time task is extremely challenging, particularly when considering
complex resource arbitration schemes beyond static time partitioning of accesses.

For adopting multicore architectures in hard real-time (control) applications, the use
of formal and exhaustive analysis is inevitable in order to deliver tight safe bounds on
the timing behavior. On the other hand, one must also ensure scalability to cope with
systems of industrial interest. The proposed analysis technique achieves precision
and scalability by employing timed model checking, explicit state-based modeling
of the resource arbiter, aggregated access request curves, and the PREM approach.
PREM yields a phase-type organization and modeling of software, where the tasks’
read and write accesses to shared memory are performed only during acquisition and
replication phases, while during execution phases, computation is performed without
any cache misses. This reduces the non-determinism in the software and works for
the scalability of the model checking driven approach.

PREM does not limit the applicability of the proposed analysis to a specific software
system: given a set of tasks mapped to a core, one can derive a sequence of mem-
ory access phases and phases of pure local cache-served computations, and compute
the worst-case execution time for these phases, ignoring memory access latencies.
One then maps arbitrary tasks sets executing on a core to PREM by considering all
possible interleaving of phases as appearing in the hyper-period of the task set.

8.2 Discussion

Analysis in the presence of timing anomalies. When it comes to multi-core archi-
tectures exhibiting timing anomalies the proposed approach needs to be considered
with care.

– It only applies to timing monotone DRAM controllers, where a larger number
of access requests placed on the DRAM controller by any core does not lead to
faster servicing times of the requests.

– For processors, a timing anomaly commonly refers to the effect that a cache miss
may yield a shorter worst-case execution time as opposed to a cache hit for the
very same instruction / data item. Potential reasons for this are the out-of-order
execution of the pipeline, branch-prediction and program pre-fetching enabled by
a cache hit and suppressed with a cache miss and the cache replacement policy.
Here one has to consider two cases: (1) Such effects are absent in so called timing
composable platforms that are commonly considered for deploying of real-time
systems, e. g. the Multi-Purpose Processor Array of Kalray [5]. In addition they
might be avoidable by code modification techniques5; (2) Allowing the bounds
on the number of cache misses and worst-case execution times of phases to orig-
inate from different program execution paths, breaks up the dependency between

5 The authors of [24] propose a method which avoids timing anomalies due to out-of-order (micro)-
instruction execution. It is empirical shown that such efforts might not utterly compromise the performance
of the original software.
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worst-case execution time and number of memory accesses, at the cost of tight-
ness. This renders core-related timing anomalies insignificant for the proposed
approach. However, in this case the core-local worst-case execution time analysis
under timing anomalies and unknown memory access times is a pre-requisite to
the proposed analysis [24,33]. If this can not be performed, one would have to
use a single integrated analysis framework which is truly beyond the scope of the
presented approach.

Adequacy of abstraction of core-wise memory access patterns. PREM and the
used abstractions, particularly the replacement of individual models of cores with
memory access request curves, allow us to achieve scalability, crucial for any state-
based modeling and analysis. For settings, where the core-individual memory access
frequencies are not overly high, this abstraction does not introduce too much pes-
simism. This is demonstrated in the empirical evaluation, as in most cases the ob-
tained worst-case response times are not too far away from the simulation results.
However, for settings, where cores do not issue memory accesses at the same time,
e. g. due to inter-core software synchronization mechanisms, the proposed summing
of core-local access curves may introduce a significant amount of pessimism. This is
because, this way we model a joint access of all cores to the main memory, which in
reality may never occur. This explains why the method may produce worst-case esti-
mates which are close to the conservative, trivial bound, particularly for settings with
high memory access frequencies. By taking inter-core synchronization into account
when computing and aggregating the memory access curves, one could compensate
this and re-gain precision. How to do this, however, is left to future research.

Achieving precision when analyzing arbitrarily complex resource access schemes in
multicores has been our main motivation and the lack of scalability the most difficult
hurdle to overcome. In this respect, the presented approach improves significantly
upon previous results: it handles arbitrarily complex resource arbitration mecha-
nisms, i. e. it is not tied to a specific scheme and it avoids (extremely) pessimistic
over-approximation of resource arbiters6. The strength of the proposed framework
is highlighted in those cases, where any conservative, but trivial worst-case bound-
ing becomes extremely pessimistic due to the complexity of the resource arbiter. In
summary, the proposed framework and abstractions balance well precision of the ob-
tained worst-case response times on the one hand, and scalability on the other hand.
This has also been confirmed through the benchmarking of the proposed techniques.
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