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 Synchronized clocks are essential for many applications:
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 Hardware clock

Counter register of the microcontroller

Sourced by an external crystal (32kHz, 7.37 MHz)

 Clock drift

Random deviation from the nominal rate dependent on ambient 
temperature, power supply, etc. (30-100 ppm)
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Hardware Clocks Experience Drift
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 Problem: Jitter in the message delay

Various sources of errors (deterministic and non-deterministic)

 Solution: Timestamping packets at the MAC layer (Maróti et al.)

→ Jitter in the message delay is reduced to a few clock ticks
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Messages Experience Jitter in the Delay
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 Goal: 

Send time information (beacons) to synchronize clocks

 Problems:

Hardware clocks exhibit drift

Jitter in the message delay
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Summary: Clock Synchronization
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 Sychnronization error vs. hop distance
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Preview: Experimental Results
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 Introduction

 Theory

 Practice
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 How do we synchronize the clocks of two sensor nodes?
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Synchronizing Nodes: Single-Hop
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 Sending periodic beacons to synchronize nodes
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 Message delay jitter affects clock synchronization quality
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How accurately can we synchronize two Nodes?
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 Message delay jitter affects clock synchronization quality
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How accurately can we synchronize two Nodes?
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 Lower Bound on the clock skew between two neighbors
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Clock Skew between two Nodes
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 How do we synchronize the clocks of multiple sensor nodes?
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Synchronizing Nodes: Multi-hop
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 How does the network diameter affect synchronization errors?

 Examples for sensor networks with high diameter

Bridge, road or pipeline monitoring

Deployment at Golden Gate Bridge with 46 hops
(Kim et al., IPSN’07)
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Now we have a network of nodes!
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 Nodes forward their current estimate of the reference clock

Each synchronization beacon is affected by a random jitter J

 Sum of the jitter grows with the square-root of the distance

stddev(J1 + J2 + J3 + J4 + J5 + ... Jd) = √d×stddev(J) 
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Multi-hop Clock Synchronization
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 Introduction

 Theory

 Practice
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 Flooding Time Synchronization Protocol (FTSP)

Nodes synchronize to a root (leader) node

Leader-election phase (by smallest id)

Periodic synchronization beacons (unaligned)

Linear-regression table to correct clock drift
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Clock Synchronization in Practice
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 Measurement results from testbed with 20 Mica2 nodes
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Testbed Experiments (FTSP)
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 FTSP uses linear regression to compensate for clock drift

Jitter is amplified before it is sent to the next hop
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Linear Regression (FTSP)
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 Simulation of FTSP with regression tables of different sizes
(k = 2, 8, 32)
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 Send fast synchronization pulses through the network

Speed-up the initialization phase

Faster adaptation to changes in temperature or network topology
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The PulseSync Protocol
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 Remove self-amplification of synchronization error

Fast flooding cannot completely eliminate amplification
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The PulseSync Protocol (2)
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 Testbed setup

20 Crossbow Mica2 sensor nodes

PulseSync implemented in TinyOS 2.1

FTSP from TinyOS 2.1

 Network topology

Single-hop setup, basestation

Virtual network topology (white-list)

Acknowledgments for time sync beacons
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Evaluation
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 Global Clock Skew

• Maximum synchronization error between any two nodes
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Experimental Results

Synchronization Error FTSP PulseSync

Average (t>2000s) 23.96 µs 4.44 µs

Maximum (t>2000s) 249 µs 38 µs
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 Sychnronization Error vs. distance from root node
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Experimental Results (2)
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 Extension to more general network topologies

 Schedule synchronization beacons without collisions

• Time information has to propagate quickly through the network

• Avoid loss of synchronization pulses due to collisions
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Outlook

This is known as wireless broadcasting, 
a well-studied problem (in theory)



 Theoretical insights into clock synchronization

Lower bound on the global clock skew

 PulseSync: a novel clock synchronization algorithm

Flooding sync pulses at high speed through the network

Matches the lower bound on the global skew (shown in the paper)

 Testbed experiments on a 20-node line topology

Prototype implementation of PulseSync 

PulseSync outperforms FTSP for this setting
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Conclusions


