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Abstract In this work we design an evolutionary algorithm for the exption of the
electric and electronic (E/E-)architectures in a car. Wecdbe a novel way to si-
multaneously optimize the assignments of function comptste electronic control
units (ECU) and of ECUSs to busses. To this end we presentabdeitepresentation
as well as corresponding variation operators. We also gedveuristics for the opti-
mization of the communication infrastructure, i.e. howdmssare connected to each
other. Preliminary results show that the approach is ablgréduce architectures
similar to those which are used nowadays, as well as progwternatives.

1 Introduction

In the last decade, the electric and electronic systems-dEdhitectures) of a car
have become increasingly complex. Additional functionshsas brake assistance,
skidding control, or parking aid have been integrated, Wiricturn lead to an ex-
plosion of the number of electronic control units (ECUs) #meir communication.
As a result, the design of E/E-architectures gets more arré maolved and time
consuming. Many communication links and dependenciesdmtwingle functions
prohibit a simple decomposition of the architecture desagk into independent
subtasks. Instead, even minor individual decisions may laaglobal influence on
the whole system evaluation in terms of objective functiang constraints.

In this work, we present a high-level optimization framekvahich considers all
major tasks, from setting up the ECUs and placing them in éneip to connecting
them to busses and define the cable routing. It is not the parpbthe proposed
approach to fully automate the design of future E/E-architees. Rather, it should
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provide decision support for design engineers by presgititernatives to current
designs.

2 The Design of an E/E-Architecture

Figure 1 shows an example of an abstract E/E-architectisigiileNe assume that
the E/E-architecture will have to implement a number of cosiig functions, which

in turn consist of a number of individual components that camicate via signals.

Such components can either be sensors, processing contpooeactuators. In

order to incorporate a function into the car, its componéatge to be assigned to
assembly units, in general ECUs, which in turn have to begolac an appropriate
location in the car and assigned with additional hardwartelligent semiconduc-
tors), depending on the components requirements. Next@iés need to be as-
signed to busses of a specific type (LIN, CAN, MOST, FlexRaywhich need to

be connected via gateways, such that all digital signal$deaouted using the con-
structed inter-bus topology, i.e. over a sequence of bussasected by gateways.
Beside the inter-bus topology, for each bus an intra-busltgy (e.g. linear or star)

needs to be defined, that states which ECUs are physicaltyeoted.

o
@ Sensor
@ Processing Component ECU
O Actuator \"_" Digital Bus
—> Signal

Fig. 1 E/E-Architecture Design Example: A given function contagn7 components and 7 signals
is assigned to ECUs (left) and the corresponding ECUs aigresito digital busses (right), where
the middle ECU acts as a gateway between the two bussesblrepology is not shown.

The resulting architectures are evaluated according toovyectives which are
to be minimized. The first one is cost, which is governed byctitfde and ECU cost.
The cables in turn depend on the signals that have to be rbetagen the ECUs,
on the used communication structure as well as on the platteaighe ECUs.
The second objective is ECU complexity defined as the avaragder of different
functions assigned to an ECU. A low complexity increaseseliability of a car as
the number of functions which are affected by a single ECluifaiis minimized.
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3 Optimizing E/E-Architectures

Due to the size of the search space and the presence of selretive functions,
we propose to design a multiobjective evolutionary aldgponito optimize the E/E-
architecture design problem. Evolutionary algorithms ¢lEAre considered to be
black box optimization algorithms and therefore, they asedumostly for problem
classes where classical standard methods fail or can haedipplied [9]. To make
the search most efficient, the EA needs to be adapted to thedepno Problem-
specific knowledge enters EAs through (a) embedded locaisties, (b) an appro-
priate representation of solutions and (c) correspondamigition operators. The use
of local heuristics reduces the search space size of the Ethdavailable diversity
of solutions in the population might be lost [3]. We decidedo the following split,
based on the observation that many decisions only affecobjeetive, namely the
cost, and the cost-optimal solution can be found in a sttdimfward manner.

EA-optimized decisions:

e Task 1: Assignment of components to ECUs
e Task 2: Physical placement of ECUs
e Task 3: Assignment of ECUs to digital busses

Decisions made by local heuristics:

¢ Intelligent semiconductor selection for each ECU (simplyet the cheapest that
satisfies the memory requirements of the processing conmp®oéthat ECU)

e Inter-bus topology(described in Section 3.3)

e Bus type selection (choose the cheapest type that satisGetata-rate require-
ments of the signals that have to be routed over the bus)

e Intra-bus topology (choose such that the cable cost is nideit)

3.1 Representation

Now that we have reduced the number of tasks that have to beipetl by the EA,
we need to design a suitable representation to optimize tfas&s simultaneously.
This is in contrast to the two-stage approach of Limam [6]o\itst optimizes Task
1 and then takes the best assignment and optimizes TaskIgo ldiffers from the
work of Hardung [4], where physical placement and cableingLis fixed and only
the assignment of components to the given ECUs is optimizethermore, the
representation must be able to express all possible sositind allow the design of
operators that have a direct and controllable effect [8].

The assignment of components to ECUs corresponds to agairig of the com-
ponents intdk clusters, wherd, i.e. the number of clusters, is a parameter to be
optimized. The assignment of ECUs to busses starts witltipaihg the ECUs to
busses and later on defining gateways to connect the bugsesgstion 3.3). This
partitioning differs from the first because the number of E@S9 well as the number
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of busses is not fixed. Therefore the second partitioningdép on the first. One
could handle the tasks separately and require additiopairstrategies to make
both partitioning fit together [1]. In our approach this degency is handled by the
data structure of the representation to reduce the numbefeafsible assignments
and avoid the bias that may be induced by a repair strategy.detta structure is
in form of a hierarchical partitioning, where components first partitioned into

ECUs, and the ECUs are then partitioned to busses, see Riglinés data structure
is implemented as a tree which allows a direct manipulatiothb operators. Rep-
resenting the placement of ECUs in the car is also straigiwerd. We assume that
we are given a set of possible mounting spaces and simply adouating space
field for each ECU node in the representation.

,——\/,car\——\
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@ Sensor
@ Processing Component ECU
O Actuator \"_" Digital Bus

Fig. 2 EA Representation: Hierarchical Partitioning (ComporterECU and ECU to Bus)

3.2 Variation Operators

In general, a mutation operator should perform a slight amtiom change. Dif-
ferent operators can be characterized according to thiea@estiveness, locality and
bias, for which we gave definition and measures in [7]. Foausin partitioning
problems, Falkenauer [2] did extensive research. He folaidst mutation operator
must be able to merge and split clusters, and optionally teensingle elements
from one cluster to another. We extended his ideas for thrafuleical partitioning
mutation operator as follows: First, a partitioning leviet (either the component
to ECU or the ECU to bus level) is selected at random. Theheeinerge, split
or move is selected at random. If a merge operation is selett® random clus-
ters are merged. In the case of a split operation, a randosteclis split into two
random parts. Finally in case of a move operation, a randemet is moved to a
random cluster. The mutation of the mounting space assighisistraight forward,
arandom ECU is selected and its mounting space field is ralyddranged.

The role of recombinationis to improve a solution by addigdain property of
an already good one. Therefore, these properties must bealle and exchange-
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able by the recombination operator. If not, a recombinatiay just perform large
changes, without a driving force to improve a solution. fertecombination oper-
ator we also make use of Falkenauers work. We again selectiiqréng level at
random. On this level we randomly select a cluster of thedhition and copy it to
the partitioning of the second solution. As the elementleftew cluster now occur
twice in this partitioning, the occurrences originatingrfr the second solution are
deleted. In the same way, we also add a cluster of the secalnel fiost solution. The
proposed recombination therefore creates two new sokbigrdirectly exchanging
ECUs or whole busses.

3.3 Gateway Selection Heuristic

The busses resulting from the hierarchical partitioning @ot yet connected via
gateways and therefore do not ensure that ECUs which impiecoenponents that
need to communicate to each other and which reside on diffbtesses actually can
transmit signals via communication paths on the intra-bpslogy. We decided that
the busses should be connected in a tree-like manner, satdth#routing of signals
is unambiguous. This is in accordance with architecturentes from the industry,
in which most busses are also connected in a tree shape.

To generate a tree, we first construct a graph where the noel@seabusses and
the edges represent the signals that have to be transmétegdn the two corre-
sponding busses. Each edge is weighted with the total degafall signals that
have to be transmitted between sink and source bus of that &dgthen apply a
standard algorithm to find a maximum spanning tree of thabtyf&]. This span-
ning tree is unique only if no two edges have the same weighteiove ties, a
given ordering of the signals is used to identify the edgé wie lower rank. After
calculating the spanning tree, a gateway is created foredgh in the spanning tree
by adding an ECU from one bus to the other. This is done in sughyathat the
cost for additional cables is minimized.

The use of this heuristic has several advantages. Firstethdting topologies
assure that for each signal a unique path from sender tovezcexists. This is
given because a spanning tree must preserve the connedfithe initial graph,
which is defined by the signals. It is further worth mentiapithat if a bus does
not exchange signals with the other busses, the heuridtioeticreate a gateway.
Therefore the resulting topologies are connected as muokeded and as less as
possible. Second, the distance of two busses in the topddogfated to the data
rate of the exchanged signals. Therefore large commuaitateds are handled as
direct as possible. All in all this heuristic reduces theesif the search space by
omitting infeasible topologies and further is biased orfgmred topologies.
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3.4 Handling Infeasibility

There are several situations in which a generated E/E{anthie is infeasible.

These architectures could be repaired using heuristiasd hepairs may introduce
an unintended bias and require extensive problem-specitierledge. Therefore,

we decided to use a generic repeat-strategy. If a mutatéitecture is infeasible,

the parent is mutated again until a feasible one is foundo ffieasible architecture
can be found after a fixed number of trials, the original aedture is returned.

4 Conclusions

We presented an evolutionary algorithm that optimizes &i#hitectures in a holis-
tic manner. We first decided which optimization tasks shduddptimized by the
EA and which by local heuristics. Then, we propose to use i@tdbical partition-
ing in order to represent the assignment of components tosE@lthe first level and
of ECUs to digital busses on the second level. We also defitegdel variation op-
erators, as well as heuristics to optimize the communindteiween digital busses.
Preliminary results on a real-world problem with 20 funoscand a total of 150
components show that our algorithm is able find both exisirtdpitectures which
are used in practice, as well as new designs that can be usegbtove existing
designs. Future work contains the evaluation of operatuisalection strategies as
well as a more problem specific constraint handling strategy
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