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Abstract In this work we design an evolutionary algorithm for the exploration of the
electric and electronic (E/E-)architectures in a car. We describe a novel way to si-
multaneously optimize the assignments of function components to electronic control
units (ECU) and of ECUs to busses. To this end we present a suitable representation
as well as corresponding variation operators. We also provide heuristics for the opti-
mization of the communication infrastructure, i.e. how busses are connected to each
other. Preliminary results show that the approach is able toproduce architectures
similar to those which are used nowadays, as well as promising alternatives.

1 Introduction

In the last decade, the electric and electronic systems (E/E-architectures) of a car
have become increasingly complex. Additional functions such as brake assistance,
skidding control, or parking aid have been integrated, which in turn lead to an ex-
plosion of the number of electronic control units (ECUs) andtheir communication.
As a result, the design of E/E-architectures gets more and more involved and time
consuming. Many communication links and dependencies between single functions
prohibit a simple decomposition of the architecture designtask into independent
subtasks. Instead, even minor individual decisions may have a global influence on
the whole system evaluation in terms of objective functionsand constraints.

In this work, we present a high-level optimization framework which considers all
major tasks, from setting up the ECUs and placing them in the car up to connecting
them to busses and define the cable routing. It is not the purpose of the proposed
approach to fully automate the design of future E/E-architectures. Rather, it should
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provide decision support for design engineers by presenting alternatives to current
designs.

2 The Design of an E/E-Architecture

Figure 1 shows an example of an abstract E/E-architecture design. We assume that
the E/E-architecture will have to implement a number of composite functions, which
in turn consist of a number of individual components that communicate via signals.
Such components can either be sensors, processing components, or actuators. In
order to incorporate a function into the car, its componentshave to be assigned to
assembly units, in general ECUs, which in turn have to be placed in an appropriate
location in the car and assigned with additional hardware (intelligent semiconduc-
tors), depending on the components requirements. Next, theECUs need to be as-
signed to busses of a specific type (LIN, CAN, MOST, FlexRay,...), which need to
be connected via gateways, such that all digital signals canbe routed using the con-
structed inter-bus topology, i.e. over a sequence of bussesconnected by gateways.
Beside the inter-bus topology, for each bus an intra-bus topology (e.g. linear or star)
needs to be defined, that states which ECUs are physically connected.
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Fig. 1 E/E-Architecture Design Example: A given function containing 7 components and 7 signals
is assigned to ECUs (left) and the corresponding ECUs are assigned to digital busses (right), where
the middle ECU acts as a gateway between the two busses. Intra-bus topology is not shown.

The resulting architectures are evaluated according to twoobjectives which are
to be minimized. The first one is cost, which is governed by thecable and ECU cost.
The cables in turn depend on the signals that have to be routedbetween the ECUs,
on the used communication structure as well as on the placement of the ECUs.
The second objective is ECU complexity defined as the averagenumber of different
functions assigned to an ECU. A low complexity increases thereliability of a car as
the number of functions which are affected by a single ECU failure is minimized.
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3 Optimizing E/E-Architectures

Due to the size of the search space and the presence of severalobjective functions,
we propose to design a multiobjective evolutionary algorithm to optimize the E/E-
architecture design problem. Evolutionary algorithms (EAs) are considered to be
black box optimization algorithms and therefore, they are used mostly for problem
classes where classical standard methods fail or can hardlybe applied [9]. To make
the search most efficient, the EA needs to be adapted to the problem. Problem-
specific knowledge enters EAs through (a) embedded local heuristics, (b) an appro-
priate representation of solutions and (c) corresponding variation operators. The use
of local heuristics reduces the search space size of the EA but the available diversity
of solutions in the population might be lost [3]. We decided to do the following split,
based on the observation that many decisions only affect oneobjective, namely the
cost, and the cost-optimal solution can be found in a straight-forward manner.

EA-optimized decisions :

• Task 1: Assignment of components to ECUs
• Task 2: Physical placement of ECUs
• Task 3: Assignment of ECUs to digital busses

Decisions made by local heuristics :

• Intelligent semiconductor selection for each ECU (simply take the cheapest that
satisfies the memory requirements of the processing components of that ECU)

• Inter-bus topology(described in Section 3.3)
• Bus type selection (choose the cheapest type that satisfies the data-rate require-

ments of the signals that have to be routed over the bus)
• Intra-bus topology (choose such that the cable cost is minimized)

3.1 Representation

Now that we have reduced the number of tasks that have to be optimized by the EA,
we need to design a suitable representation to optimize these tasks simultaneously.
This is in contrast to the two-stage approach of Limam [6], who first optimizes Task
1 and then takes the best assignment and optimizes Task 2. It also differs from the
work of Hardung [4], where physical placement and cable routing is fixed and only
the assignment of components to the given ECUs is optimized.Furthermore, the
representation must be able to express all possible solutions and allow the design of
operators that have a direct and controllable effect [8].

The assignment of components to ECUs corresponds to a partitioning of the com-
ponents intok clusters, wherek, i.e. the number of clusters, is a parameter to be
optimized. The assignment of ECUs to busses starts with partitioning the ECUs to
busses and later on defining gateways to connect the busses (see section 3.3). This
partitioning differs from the first because the number of ECUs as well as the number
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of busses is not fixed. Therefore the second partitioning depends on the first. One
could handle the tasks separately and require additional repair strategies to make
both partitioning fit together [1]. In our approach this dependency is handled by the
data structure of the representation to reduce the number ofinfeasible assignments
and avoid the bias that may be induced by a repair strategy. This data structure is
in form of a hierarchical partitioning, where components are first partitioned into
ECUs, and the ECUs are then partitioned to busses, see Figure2. This data structure
is implemented as a tree which allows a direct manipulation by the operators. Rep-
resenting the placement of ECUs in the car is also straight-forward. We assume that
we are given a set of possible mounting spaces and simply add amounting space
field for each ECU node in the representation.
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Fig. 2 EA Representation: Hierarchical Partitioning (Componentto ECU and ECU to Bus)

3.2 Variation Operators

In general, a mutation operator should perform a slight and random change. Dif-
ferent operators can be characterized according to their exhaustiveness, locality and
bias, for which we gave definition and measures in [7]. Focusing on partitioning
problems, Falkenauer [2] did extensive research. He found that a mutation operator
must be able to merge and split clusters, and optionally to move single elements
from one cluster to another. We extended his ideas for the hierarchical partitioning
mutation operator as follows: First, a partitioning level (i.e. either the component
to ECU or the ECU to bus level) is selected at random. Then, either merge, split
or move is selected at random. If a merge operation is selected, two random clus-
ters are merged. In the case of a split operation, a random cluster is split into two
random parts. Finally in case of a move operation, a random element is moved to a
random cluster. The mutation of the mounting space assignment is straight forward,
a random ECU is selected and its mounting space field is randomly changed.

The role of recombination is to improve a solution by adding acertain property of
an already good one. Therefore, these properties must be reachable and exchange-
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able by the recombination operator. If not, a recombinationmay just perform large
changes, without a driving force to improve a solution. For the recombination oper-
ator we also make use of Falkenauers work. We again select a partitioning level at
random. On this level we randomly select a cluster of the firstsolution and copy it to
the partitioning of the second solution. As the elements of the new cluster now occur
twice in this partitioning, the occurrences originating from the second solution are
deleted. In the same way, we also add a cluster of the second tothe first solution. The
proposed recombination therefore creates two new solutions by directly exchanging
ECUs or whole busses.

3.3 Gateway Selection Heuristic

The busses resulting from the hierarchical partitioning are not yet connected via
gateways and therefore do not ensure that ECUs which implement components that
need to communicate to each other and which reside on different busses actually can
transmit signals via communication paths on the intra-bus topology. We decided that
the busses should be connected in a tree-like manner, such that the routing of signals
is unambiguous. This is in accordance with architecture examples from the industry,
in which most busses are also connected in a tree shape.

To generate a tree, we first construct a graph where the nodes are the busses and
the edges represent the signals that have to be transmitted between the two corre-
sponding busses. Each edge is weighted with the total data rate of all signals that
have to be transmitted between sink and source bus of that edge. We then apply a
standard algorithm to find a maximum spanning tree of that graph [5]. This span-
ning tree is unique only if no two edges have the same weight. To remove ties, a
given ordering of the signals is used to identify the edge with the lower rank. After
calculating the spanning tree, a gateway is created for eachedge in the spanning tree
by adding an ECU from one bus to the other. This is done in such away that the
cost for additional cables is minimized.

The use of this heuristic has several advantages. First, theresulting topologies
assure that for each signal a unique path from sender to receiver exists. This is
given because a spanning tree must preserve the connectivity of the initial graph,
which is defined by the signals. It is further worth mentioning, that if a bus does
not exchange signals with the other busses, the heuristic will not create a gateway.
Therefore the resulting topologies are connected as much asneeded and as less as
possible. Second, the distance of two busses in the topologyis related to the data
rate of the exchanged signals. Therefore large communication needs are handled as
direct as possible. All in all this heuristic reduces the size of the search space by
omitting infeasible topologies and further is biased on preferred topologies.
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3.4 Handling Infeasibility

There are several situations in which a generated E/E-architecture is infeasible.
These architectures could be repaired using heuristics. These repairs may introduce
an unintended bias and require extensive problem-specific knowledge. Therefore,
we decided to use a generic repeat-strategy. If a mutated architecture is infeasible,
the parent is mutated again until a feasible one is found. If no feasible architecture
can be found after a fixed number of trials, the original architecture is returned.

4 Conclusions

We presented an evolutionary algorithm that optimizes E/E-architectures in a holis-
tic manner. We first decided which optimization tasks shouldbe optimized by the
EA and which by local heuristics. Then, we propose to use a hierarchical partition-
ing in order to represent the assignment of components to ECUs on the first level and
of ECUs to digital busses on the second level. We also define suitable variation op-
erators, as well as heuristics to optimize the communication between digital busses.
Preliminary results on a real-world problem with 20 functions and a total of 150
components show that our algorithm is able find both existingarchitectures which
are used in practice, as well as new designs that can be used toimprove existing
designs. Future work contains the evaluation of operators and selection strategies as
well as a more problem specific constraint handling strategy.
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