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Abstract—BitTorrent, the most popular peer-to-peer (P2P)

file-sharing protocol, accounts for a significant fraction of the

traffic of the Internet. Using a novel technique, we measure live

BitTorrent swarms on the Internet and confirm the conjecture

that overlay networks formed by BitTorrent are not locality-

aware, i.e., they include many unnecessary long distance connec-

tions. Attempts to improve the locality have failed because they

require a modification of the existing protocol, or interventions

by Internet service providers (ISPs). In contrast, we propose a

lightweight method that improves the locality of active swarms

by 6% by suggesting geographically close peers with the Peer

Exchange Protocol (PEX), without any modifications to the

current system. An improvement of locality not only benefits the

ISPs by reducing network transit cost, it also reduces the traffic

over long-distance connections, which delays the need to expand

the infrastructure, easing the power consumption. We expect that

if used on a large scale our method reduces the Internet’s energy

consumption by 8 TWh a year.

I. INTRODUCTION

Today’s Internet traffic is by and large local. E-mails are

mostly exchanged among members of the same organization,

as are VoIP calls, most popular web sites are within the same

country as their users, and online gamers prefer playing on

servers close-by. What about data from popular global Internet

hot spots such as YouTube, Facebook or CNN.com? That

is also local: replication and content caching — besides the

intended performance and stability improvement — had the

side effect of moving the content closer to the consumer. So for

most activities on the Internet, the user will communicate only

with the closest caching center, which is probably somewhere

in a nearby city.

One may argue that in today’s Internet, hardly any data item

of significant size travels around the world more than once.

Largely for this reason, the Internet infrastructure did not grow

as fast as the traffic of the Internet. The last decade’s main

bottleneck was the last mile, and not the backbone. Aware of

the locality of today’s Internet, two basic questions need to be

raised: is there any substantial application that is not local?

And if so, can we improve on its energy efficiency by making

it more local? These are the two questions addressed in this

paper, and we answer both of them affirmatively.

BitTorrent is such an application as it causes massive

amounts of non-local traffic. Like Karagiannis et al. [10] first

pointed out, BitTorrent is anything but local; thus burdening

internet service providers (ISPs) with increased transit costs.

Various studies [1], [11], [15], [19], [20] attempted to quantify

the traffic share that can be attributed to BitTorrent. The

estimates range from 18% to 37%, depending on methodology

and measurement point. Like other peer-to-peer (P2P) file-

sharing systems, BitTorrent integrates the downloaders into the

dissemination of the content. As such, P2P systems impose the

cost of content dissemination mainly on end-users and ISPs.

This is in stark contrast to classic client-server systems, where

the content releaser bears most of the costs.

Numerous proposals have attempted to improve the locality

of BitTorrent. However as we show in this paper, peer-to-peer

file sharing is still not local. The reason for the continued

lack of locality-awareness is that most of the proposals assume

incentives for the end-user or the tracker operators, that are

insufficient or do not exist.

Some ISPs have started to throttle or even block BitTorrent

traffic [7] to counter their increased costs. Obviously, such

interventions — often referred to as traffic shaping — are

problematic as they infringe network neutrality, the principle

that the Internet infrastructure should not prioritize certain

applications at the expense of others. In this work, we

introduce a method to measure the locality of live BitTorrent

swarms. Additionally, we present a novel method that allows

ISPs to improve the locality without interfering with the

actual data transfer.

A. BitTorrent Overview

BitTorrent is a popular P2P file-sharing protocol proposed

by Bram Cohen [6] in 2001. Unlike Gnutella or eMule,

BitTorrent does not include mechanisms to search and discover

content, instead it relies on metadata files called torrents to be

distributed out of band. The torrent file contains the details

of the content that is shared, an info hash which uniquely

identifies the torrent, a tracker that is used to establish the

first contact and SHA1 hashes of the content for integrity
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verification.

Peers interested in sharing the content detailed in the torrent

form ad-hoc networks called swarms. A tracker is used to

bootstrap the communication. While not actively participating

in the sharing of the content, a tracker keeps track of the peers

that participate in the swarm. To join a swarm, a peer contacts

the tracker and announces its interest to join. The tracker will

then take a random subset of the peers matching the same

info hash and return them to the newly joining peer. The

joining peer will then start connecting to the peers it received

in the tracker response. Most clients keep a pool of about 50

connections active.

The tracker may use a variety of transports, the most

common being the traditional HTTP transport and a simplified

UDP transport. Recently a distributed hashtable (DHT) tracker,

based on the Kademlia protocol [14], has gained popularity

due to its distributed and fault-tolerant nature. Once connected

to other peers in the swarm, a peer starts trading pieces.

Thereby, it basically trades downloaded pieces of content for

missing pieces.

There are various extensions to the original protocol includ-

ing the Azureus Messaging Protocol1, the LibTorrent extension

protocol2, protocol obfuscation and an alternative transport

protocol based on UDP (µTP). The Azureus Messaging Pro-

tocol and the LibTorrent extension protocol implement a peer

exchange (PEX) mechanism used to inform neighbors of other

peers in the swarm. µTP and protocol encryption are mainly

used to avoid ISP throttling or improve congestion control and

do not alter the behavior of the clients.

The original BitTorrent protocol is not locality-aware: to

enter a swarm, a peer polls a tracker for a random set of

peer addresses currently active in the swarm; then the peer

connects to a random set of the available peers. Note that

with this process, any potential connection is established

with the same probability. The yielded network topology

corresponds to a random graph.

B. Related Work

Karagiannis et al. [10] were the first to recognize the

optimization potential in P2P to reduce the load on inter-ISP

links by improving the locality. The benefits of making the

BitTorrent protocol locality-aware have been widely studied

and several methods of improving the locality have been

proposed. Recently, Le Blond et al. [12] provided an overview

of what can be achieved if the locality is pushed to the limit

in several common scenarios.

Studying locality has so far been limited to either artifi-

cial scenarios in controlled environments or partial views of

the network by tapping into one or several internet service

1http://wiki.vuze.com/w/Azureus messaging protocol
2http://www.rasterbar.com/products/libtorrent/extension protocol.html

providers. Our approach is the first to measure the topology

of BitTorrent swarms in the wild. Our method requires no

modification to either the tracker or the actual clients partic-

ipating in the swarm, nor do we actively participate in the

exchange of potentially copyrighted material.

For the locality improvement there have been numerous

proposals, most of which can be categorized by their method

of influencing the swarm:

• modification of the client to bias the way it chooses the

peers to connect to;

• modification of the tracker so that it only returns peer

addresses of peers that are believed to be close to the

requester;

• modification of communication between clients or tracker

responses by the ISP.

TopBT [18] measures the AS distance and link hop distance

by pinging a peer before establishing the connection. The

selection of neighbors is then biased to prefer nearby peers.

Ono [4] uses another method to identify close-by peers: based

on the idea that peers that redirect to the same CDN are often

close, peers give higher priority to peers with the same CDN.

The information is exchanged either directly after a connection

has been established or via a tracker that supports this type

of localization improvement. Though not formally studied in

the case of the BitTorrent protocol, Pereira et al. [16] propose

keeping a variable number of connections open as to guarantee

the availability of the shared data. New connections, to more

distant peers, are only established if the availability is no

longer granted. Again, the distance to other peers is measured

in terms of routing hops, determined by the TTL field of

packets. Unfortunately, while promising large improvements

in locality, all of the mentioned methods either require a

concerted effort of the client developers to implement the

proposals; or they put additional strain on the network as active

distance measurements are repeatedly conducted from multiple

endpoints.

Tracker modifications on the other hand allow a single co-

ordinating entity to improve the locality. The modified tracker

announces only close-by peers to the requesting peer, thus

skewing its view of the rest of the network. Biased Neighbor

Selection [2] relies on the peers to inform the tracker of their

location, it then uses the location information to announce only

peer selections that comply with a fixed ratio of local to non-

local peers. Varvello et al. [23] analyze possibilities of how

the decentralized, DHT-based tracker can be used to enforce

locality. They deploy sybil nodes that take over the region of

the DHT that is responsible for queries regarding the targeted

torrent. Similar to the tracker modification methods, they can

announce a custom selection to each peer. Modifying the

tracker allows for unilateral improvement of the locality, i.e.,

no modifications to the clients is required. Furthermore, tracker

modifications yield large improvements up to 40%. The effect
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is weakened if the clients use a combination of several trackers

that do not coordinate the locality improving mechanisms. The

effect is further weakened if the peers exchange information

about available peers via PEX. Additionally, the trackers are

burdened with the task of computing the best peers to suggest,

although they do not have an obvious incentive to do so.

Although end users might profit from a improved locality

due to reduced latency, the biggest stakeholders in BitTorrent

locality are the ISPs, since they incur costly inter-ISP traffic.

The simplest approach for an ISP to reduce the inter-ISP

traffic caused by BitTorrent is to detect and throttle it, a

behaviour which has been observed by Dischinger et al. [7].

Throttling is supposed to either disrupt BitTorrent completely

or to discourage inter-ISP connections. A less intrusive method

was proposed by Tian et al. [22]: ISPs should monitor swarms

and replace random peer lists sent by trackers with closer

peers, or they should install ISP-owned peers that act as a local

cache for nearby peers. This can be seen as narrowing a peer’s

view of the network as it will never learn about the existence of

most peers that are outside of the ISPs network. Finally, Xie et

al. [24] propose a framework where ISPs and P2P applications

collaborate to improve locality. All of these methods require

privileged access to the transmission medium and involve

the active modification of sent data. Such activity is often

frowned upon and considered a violation of the network

neutrality. As a result clients started encrypting the client-

to-client communication and client-to-tracker communication

to prevent their BitTorrent traffic from being identified and

consequently dropped, or from being modified by their ISP.

While all the proposed approaches seem technically appro-

priate for improving locality once they are implemented, the

uncomfortable question from a practical perspective is whether

and how the millions of BitTorrent users or the operators of

trackers could be brought to using a locality-aware BitTorrent

software; unfortunately, they do not have a natural incentive

to do so. Moreover, approaches that suggest ISPs to modify

network messages seem unacceptable for reasons of network

ethics. Approaches that require ISPs to take an active role in

disseminating often copyright infringing content are even more

problematic.

In stark contrast, our method does not require privileged

access neither to the transmitted data nor the involved

machines (clients or trackers). While we use the peer

exchange mechanism for its original purpose, i.e., to widen

the peer’s view of the network, we also provoke locality

improvements by skewing the view towards nearby peers.

II. MEASURING SWARM TOPOLOGIES

The sheer size of BitTorrent makes it hard to analyze: a

single swarm often spans dozens of independently managed

networks; peers typically run a wide variety of BitTorrent

client implementations and support different protocol exten-

sions. To understand the behavior of a swarm as a whole

we have to reconstruct the topology, i.e., we have to learn

how peers are connected and trade with each other. Existing

methods for measuring swarm topologies typically rely on log

data by the tracker, instrumenting a large number of peers or

analyzing traffic logs from ISPs. These methods are inapt for

measuring real world swarms, where neither the tracker nor

the peers are controlled by the conductors of the experiment

and the swarm is likely to span a large number of networks.

In contrast, the method we present in the following is

tailored to the case of real world swarms. It enables us to

detect connections between peers in a swarm, while not

participating in the file sharing, and without having any

particular access to the software running at the peers or the

trackers. It relies solely on the BitTorrent protocol and is not

limited to any particular implementation.

A. Measurement Method

When two BitTorrent peers connect for potential trading,

they first exchange handshake messages. Included in such a

handshake message is a 20 byte randomly generated peer id

that uniquely identifies the peer. The receiver of a handshake

message checks whether it is already connected to a peer with

the id in the message, and immediately closes the connection

if so. We call the detection and successive disconnection

of multiple connections a collision. The detection of such

collisions prevents unnecessary multiple connections between

peers. Duplicate connections would not increase the avail-

ability of pieces, however they would still occupy a slot in

the connection pool. In experiments, we confirmed that all

prevalent clients drop a new connection if it causes a collision.

We exploit this sensitivity to collisions for measuring swarm

topologies.

The basic functionality of our method is as follows: we

repeatedly poll the tracker in a distributed manner to learn the

addresses of most peers in the swarm; we then test each pair of

peers, A and B, as to whether they are connected by trying to

establish a connection to one of them using the id of the other,

i.e., we try to connect to B using the id of A or vice-versa.

If we are able to complete the handshake we can be certain

that there is no connection between the peers. We therefore

call a test resulting in a complete handshake a negative result.

If on the other hand the handshake is not completed, i.e., the

connection is closed before we get a handshake response, we

call the test a positive result as it might indicate an existing

connection. Unlike the case of a negative result, where it is

certain that there is no connection between the peers, we must

not assume that a positive result implies the existence of the

corresponding connection. There are several other reasons for

which a connection can be dropped without completing the
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handshake. The most common ones are:

• Peers with full connection pools: the peers limit the

number of connections both per torrent and globally. If

the limit is reached any new connection will be dropped

immediately;

• Blocking peers: a peer might block the IP address of

the machine that scans the swarm, either as a result of

our scanning activity or because of the fact that we use

university owned IP addresses;

• Torrent removed: as soon as a torrent has been removed, a

peer will start dropping connections related to that torrent,

i.e., it has left the swarm;

As a first step to filter out false positives we have to

distinguish dropped connections caused by our part of the

handshake from connections dropped due to other reasons,

i.e., connections dropped independently from any information

in the handshake. This can be done by delaying our handshake

by a few milliseconds. We simply ignore all tests where the

connection was dropped too soon for it to be a reaction to our

handshake. The delayed handshake eliminates false positives

that are due to the peer blocking us, and it eliminates the false

positives due to a full global connection pool. If a peer blocks

from the beginning of our scan we will never get a handshake

and we therefore drop all tests from that peer.

Most false positives however, are caused either by full

per-torrent connection pools and by removed torrents. For

both of these cases the peer needs the information from our

handshake. Thus the observable behavior is identical to a

true positive result. To reduce the number of false positives

we reschedule positive tests and retest them again later. If

the positive result was caused by an actual connection and

the connection remains open for the repeated tests we will

continue getting positive results for that test. The probability

that a test repeatedly yields false positives when it is retested

is equivalent to waiting for the first successful handshake to

be completed, and therefore decreases geometrically.

Another important factor is the runtime of a scan. The

runtime might be negligible in a small swarm, but the number

of possible connections, and therefore the number of tests

needed to detect them, grows quadratically with the number

of peers in the swarm. This means that it is fairly difficult to

get a consistent picture of a non-trivial swarm in its entirety,

simply because the topology is likely to change during the

scan. For measuring large swarms, there is a natural trade off

between consistency and completeness.

In order to get an estimate for the maximum scanning

duration that still allows for a mostly consistent view of the

swarm we instrumented the BitThief [13] BitTorrent client to

collect the connection lifetime while participating in several

swarms. After filtering out connections that were not used to

transfer pieces of the torrent we end up with the cumulative

distribution function in Figure 1. It turns out that 85% of
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Fig. 1. Cumulative distribution function of the connection lifetime.

the connections are open for longer than 400 seconds. Unless

otherwise stated all scans in our results are therefore limited

to 400 seconds.

Finally, there are some connections that we are unable to

scan. A peer might never complete a handshake with us, either

because it always has a full connection pool, because it has left

the swarm, or because it is blocking us. For such a peer, we

cannot make any direct claim about its connections. While this

is unfortunate the resulting false positives are relatively easy

to filter out during the final analysis: we simply remove all

positive results coming from peers that have never produced a

negative result. Another type of peer that remains unscannable

with our method are peers behind network address translation

(NAT) or firewalls, that are not reachable from outside.

Fortunately, besides discovering the connections of a peer

directly, we can also discover connections incident to a

peer when scanning for its peer id at the other peers in

the swarm. Indirect scanning not only allows us to detect

connections of peers that cannot be scanned directly, it also

helps eliminate false positives since each connection is tested

at both endpoints. To discover the peer ids of peers behind

a NAT or firewall we listen for incoming connections. If a

NATed peer connects to our scanner, we learn its peer id,

store it and include it in the scan.

B. Implementation

Our measurement method tests each connection individu-

ally. Consequently, scanning an entire swarm with n peers

requires O(n2) tests. In addition to the n2 − n unique tests

we reschedule all positive scans to be checked again later.

Luckily, tests can be run concurrently. More precisely tests at

different peers can be executed in parallel, to reduce the time

complexity to O(n). To distribute the load on several machines
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we split the scanner into three parts:

• A coordinator that collects peer ids and peer addresses

as they are discovered in the swarm and schedules tests;

• A number of testers that execute tests as assigned by the

coordinator;

• A log collector that collects the results from the executed

tests.

The coordinator initiates the scanning process by loading

a torrent file, parsing its contents and distributing it to the

testers. The testers are processes that run on PlanetLab [5]

nodes. They open a port and listen for incoming connections

for each torrent they get issued, poll the trackers for peers and

receive scan tests from the coordinator. A scan test consists

of the handshake information and the address of the peer to

be tested. Upon receiving a scan test the tester opens a new

connection to the address in the scan task and attempts to carry

out a handshake.

Tests may result in the handshake being completed, the

handshake not being completed, or in a connection failure,

when the connection could not be established. Connection

failures occur either because of a time-out or because the

connection is rejected.

The coordinator schedules at most one test for each tester

and each tested peer. If we were to schedule multiple tests orig-

inating from the same IP address at once we would introduce

more false positives; the reason being that a peer accepts only

one concurrent connection from each IP address. The second

connection attempt would be rejected. As we execute the

tests from several PlanetLab nodes we may schedule multiple

concurrent scan tasks with the same target peer since the tests

do not originate from the same IP address.

Let us denote the maximum number of concurrent scan

tasks targeting the same peer as concurrency. The concurrency

is thus a parameter of our measurement method. A higher

concurrency increases the probability of provoking a false

positive that is due to the fact that our testers occupy too

many slots in the connection pool of a peer.

The log collector has a feedback channel to the coordinator

to inform it about positive tests that are subject to rescheduling.

Additionally, the log collector notifies the coordinator about

peers that have caused connection failures. Such peers are

given low priority since they are unlikely ever to be reachable.

C. Evaluation

To evaluate the performance of our method we start with a

bird’s eye view of the swarms and discuss the issue of what

part of them is observable in a best case; then we evaluate our

measurement method as to how well it explores the observable

part; finally, we discuss the precision of our findings.

An average of 42.24% of the IPs returned by the trackers

were reachable during our tests, the remaining peers either
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Fig. 2. Network coverage by swarm size for various concurrency settings

rejected connections or timed out. 57.76% of the peers in the

swarm are therefore either behind a NAT or a firewall, or they

left the swarm before we contacted them.

Assuming that connections between NATed peers are just

as likely as between non-NATed peers we would only be able

to detect 100% − 57.76%2 ≈ 66.63% of the connections in

a swarm. We argue however that establishing a connection

between two NATed peers is far less likely.

The only option for two firewalled peers to establish

a connection is by using NAT-holepunching [8]. As NAT-

holepunching requires additional coordination and direct con-

nections are much easier to set up, we assume that we detect

a much larger part of the network and we consider 66.63% a

very conservative a lower bound.

To estimate the percentage of the network that we are able

to explore we ran several scans and compared the coverage to

the swarm size that we were able to achieve. To calculate the

coverage we used the following formula:

coverage =
|tests|

(|peer ids| − 1) · |peers|

Where tests is the set of scan tasks that have been executed,

peer ids is the set of peer ids and peers is the set of peers

that are reachable. The reason we differentiate between peers

and peer ids is that peers behind a NAT that provided us with

their peer id are not directly scannable. To see if a higher

concurrency allows for a higher coverage we ran several scans

with varying concurrency levels and varying swarm sizes.

Figure 2 plots the resulting coverages for concurrencies of

1, 2, 3 and 5.

As one might expect, the coverage of the network decreases

linearly with the size of the scanned network, despite the

number of tests growing quadratically. For large swarms, churn

is the main reason for the low coverage as peers leaving the

swarm make parts of the search space unscannable and newly
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Fig. 3. Temporal evolution of the coverage in a swarm with 250 peers for

different concurrency levels.

joining peers extend the search space. Peers joining at a later

time will be added to the search space but the scanner will have

less time to complete the scan on those peers. Additionally,

peers greatly vary in response times, which we define as the

time from a task being scheduled to its result arriving to the

log collector. Some peers have an average response time close

to 30 seconds. With such peers we can test only 13 peer ids

in 400 seconds.

Note that increasing the concurrency does not have a large

effect on the coverage. It turns out that the reason for the

relatively small effect is that during a measurement, the cov-

erage quickly converges to its final level, and is not improved

significantly anymore. To corroborate the convergence this we

ran 5 scans with different concurrency levels. We then parsed

the logs with increasing time frames to simulate shorter scans.

Figure 3 plots the coverage as a function of the scanning

duration. The coverage for each of the shorter scans was

calculated using the peer id count at the end of the 500 second

scan to get monotonically increasing coverages. It therefore

includes also peer ids that are yet unknown in the shorter

scans. For higher concurrency levels the scan converges faster

towards the final coverage, but the performance gain when

using a concurrency of 5 instead of 3 is not as pronounced as

when using a concurrency of 2 instead of 1.

Finally we have to quantify the errors introduced by false

positives. To detect false positives we rescheduled positive

scan tasks to be tested again later. While retesting allows us

to eliminate false positives, it also causes us to misclassify

connections that are active during the first test but are closed

before the second test. To quantify the amount of legitimate

connections that we lose during the retesting, and how ef-

fective the retesting is in identifying false positives we ran

a scan for a longer period of 1000 seconds. We then parsed

the log with increasing time frames to simulate shorter scans.
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Fig. 4. Ratio of revoked connections in relation to the scan time duration.

The swarm scanned for this purpose had 303 distinct peer ids.

We ended up with 100 scans with 10 second increments each.

For each scan we calculated the number of connections (tests

that produced a positive at first) and the number of revoked

connections (tests that resulted in a positive but were negative

during the retesting). See Figure 4 for a plot of the ratio of

revoked connections to the detected connections.

We observe that after 400 seconds the revocation rate

of detected connections becomes more or less linear. In

this linear part of the plot the revocation rate due to false

positives is negligible; the increase in revoked connections

is mostly due to legitimate connections being closed, which

causes later tests to produce negatives. Hence we can

extrapolate the number of legitimate connections in the

swarm at the beginning of the scanning process. In this

particular swarm the ratio of revoked connections after 1000

seconds was 0.563. By assuming that a linear amount of

good connections is revoked by retesting we can compute

a theoretical false positive rate of 0.505 at 400 seconds,

of which our scan detected 0.479. This leads us to the

conclusion that only 5.15% of the detected connections

in this particular swarm are false positives. Note that for

smaller swarms the revocation rate converges faster, and

most of the scanning time is spent on retesting positive results.

D. Locality Unawareness

Our scanning technique allows us to reconstruct large parts

of the topology of a BitTorrent swarm. What we end up with is

an undirected graph with connections as edges and the peers,

identified by their peer id and their IP address, as vertices.

Figure 5 illustrates the combination of all scanned swarms,

plotting each peer in its approximate geographic location and

connecting them if they are connected in the swarm.
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Fig. 5. A composite rendering of 1.9 million peers and 14.4 million connections from several swarms. The swarms were selected from ThePirateBay.se

Top 100 List. The connections trace the great circle distance, i.e., the shortest distance on the earths curvature between the peers. Multiple connections are

indicated by the opacity of the line.

Definition of Locality: Let d(a, b) denote the distance

between peers a and b; let σ(a, b) be the indicator function

that equals 1 if a and b are connected and 0 otherwise; and

let D denote the random variable that corresponds to the

distance d(a, b) between a pair (a, b) that is chosen uniformly

at random. Thus, the locality L is given by

L :=

∑

a,b σ(a, b) · d(a, b)
∑

a,b σ(a, b)
· E[D]−1.

The intuition is that if the connections are chosen in-

dependently from the distance measure d then the average

connection length has to be close to the expected distance

value for randomly chosen connections. The expected distance

E[D] can be calculated as the average connection length of all

possible connections, i.e., the distance between all possible

pairs (a, b). If L is close to 1, this indicates that the swarm is

not locality-aware. If L > 1 distances are even longer than if

connections were chosen uniformly at random. The smaller L

is, the better the locality.

It is worth noticing that false positives and coverage do not

influence the locality. The coverage merely dictates the size

of the sample, whereas the false positives act as noise that

slightly skews the result towards the expected value.

In absence of the details of the underlying physical network

topology we resort to using the geographical great circle

distance of the endpoints to estimate the actual distance in

the underlying physical network topology. Huffaker et al. [9]

showed that there is a strong correlation between geographical

great circle distance and the underlying network topology, be

it Autonomous System (AS) path length or IP path length. If

there is any large scale use of locality improving strategies

present in the BitTorrent networks, it should considerably

lower the average AS path length or IP path length as

compared to random connections, as well as the average

geographic distance between peers in a swarm.

In our measurements, we use the MaxMind IP Geolocation3

library to retrieve the geographical coordinates from peers’

IP addresses, and compute the distances between peers from

those coordinates. Together with our scanning method, which

provides the value of σ(a, b) for two peers a and b, we have

a tool that gives a good approximation of the locality L of a

given swarm.

In a series of measurements, we scanned and computed the

locality of 33 swarms that had between 50 and 500 active

peers. These swarms were chosen randomly among the most

recently published 1000 torrents of the two torrent discovery

sites with highest Alexa rank, thepiratebay.se and kat.ph.

We observed that most swarms have a locality close to

1, and the average locality over all measured swarms is

1.062. This result strongly suggests that there are no locality

improving measures present in today’s BitTorrent networks.

Arguably, the existing proposals have not been adopted due

to the weak incentives.

3http://www.maxmind.com
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III. IMPROVING SWARM LOCALITY

In this section we describe a method to influence the

topology of a BitTorrent swarm by suggesting nearby

neighbors. We argue that existing methods to improve the

locality have not been widely adopted because they rely on

weak incentives for the end-users and the tracker operators.

Moreover ISPs, which would benefit from an improved

locality of BitTorrent swarms, have not had at their disposal

the tools necessary to improve the locality. Our method does

not rely on privileged access to either the software or the

transmission medium, instead it relies on an existing protocol

extension to extend the peers view of the network and skew

it to include more nearby peers.

A. Suggesting Neighbors

As developers of BitTorrent software cannot be forced to

implement locality improving measures, we take a different

approach and improve the locality of swarms externally, by

suggesting geographically close neighbors to peers with peer

exchange (PEX) messages. PEX is a widely adopted extension

to the BitTorrent protocol that enables peers to send each other

lists of peer addresses. Thus, once connected to some peers,

more peers can be discovered using PEX without polling the

tracker. According to our tests over 93% of the peers support

PEX.

While we have no power to dictate which connections a

peer should open, we can skew its set of known peers to

include more nearby neighbors. The peer will randomly select

a peer from the set of known peers for a connection attempt.

It is therefore more likely that the resulting connection is to

a nearby peer, instead of a random long connection. A PEX

message contains the contact information, i.e., the IP addresses

and ports, of other peers in the swarm. Each peer information

contained in a PEX message is called a suggestion.

A suggestion is called successful if it results in a real

connection between the two peers. Note that the success

probability of a single suggestion depends on the size of the

receiver’s connection pool, the number of already connected

peers, and the number of peer addresses known from other

sources (trackers or other peers).

A single PEX message may contain several suggestions.

The number of peers in a PEX message, though not limited

in the protocol specification, is typically limited to 50 peer

addresses by the implementations.4 A peer receiving too many

suggestions in a PEX message might assume that the sender

is misbehaving and discard the PEX message. We therefore

limit the number of suggestions in a single PEX message to

50.

Let p be the pool size at the receiving peer; C the set of

established connections; Nk the set of known peers, excluding

4http://wiki.theory.org/BitTorrentPeerExchangeConventions

established connections, and Ns the set of peers suggested in

a PEX message, excluding established connections. We define

the random variable X that counts the number of connections

established as a result of a suggestion. The probability that at

least one suggested connection is established as result of the

PEX message is given by the hypergeometric distribution:

P [X ≥ 1] = 1− P [X = 0] = 1−

(

|Ns|
0

)

·
(

|Nk\Ns|
p−|C|

)

(

|Ns∪Nk|
p−|C|

)

In order to maximize the probability of at least one success-

ful suggestion for a PEX message we should try to maximize

the number |Ns| of suggested peers, maximize the number

p− |C| of free slots in the connection pool, and minimize the

number |Nk| of otherwise known peers that are reachable. To

maximize |Ns| we always send the maximum allowed number

of peers in the PEX message. Both of the latter conditions

cannot be changed by the suggesting party, but can be observed

in peers that have only recently joined the swarm.

A recently joined peer has just polled the tracker for peers

in the swarm and is starting to connect to peers until its

connection pool is full. It is therefore desirable to identify

recently joined peers as early as possible and suggest nearby

neighbors as they are most likely to open a connection as the

result of such a suggestion.

In order to make suggestions we first need to create a local

view of the swarm in which the peers of the swarm are stored

along with their coordinates. To create the local view we can

either repeatedly poll the tracker [21] or in the case of an ISP,

the peers can be directly extracted from the monitored traffic.

Unlike modifications or shaping of traffic, the monitoring of

traffic does not infringe network neutrality. The same two

mechanisms can also be used to identify newly joining peers.

As soon as a new peer is identified it is inserted into the local

view of the swarm. We then compute a selection of peers that

are reachable and close to the joining peer based on our view.

Once the closest peers, i.e., the ones that will be suggested,

have been identified a new connection to the targeted peer is

initiated and the PEX message is delivered.

To maximize the impact of our suggestions we always

suggest at both ends of a desired connection. Note that, similar

to NATed peers, we can even influence a peer that does

not support PEX by suggesting it to the desired neighbors.

Additionally the regular contact with known peers serves the

purpose of keeping the local view up-to-date. This includes

detecting peers that leave the swarm, so we do not suggest

them in the future.

Our method of suggesting nearby peers via PEX can

be considered a non-intrusive alternative to other external

methods that influence the swarm topology. Unlike other

methods which try to restrict a peer’s view to a subset of the

peers in the swarm, our method amplifies its view and skews

8
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it so that selected peers are more likely to be close-by.

B. Implementation

Similar to the implementation of the measurement method

we divide the suggester implementation into two separate

parts:

• A coordinator that keeps track of swarm membership,

identifies joining peers and creates suggestions;

• Several suggesters that poll the tracker, report the tracker

responses to the coordinator and carry out suggestion

tasks that they receive from the coordinator.

The suggesters are processes running on several PlanetLab

nodes. Once started they connect to the coordinator which

will issue either a tracker poll request or suggestions to be

delivered.

To initialize the local view of the swarm the coordinator

issues a tracker poll request to all suggesters. The peer

addresses received from the tracker are then mapped to their

geographical location using the MaxMind GeoIP library. To

allow efficient querying for nearby peers the geographical co-

ordinates can be arranged on a space filling curve. The distance

on the space filling curve over the coordinates approximates

the great circle distance between the coordinates.

After the local view has been created we can start suggesting

nearby neighbors to joining peers. To identify joining peers as

quickly as possible, the suggesters are scheduled to continu-

ously poll the trackers at short intervals. When a joining peer

is detected it is inserted into the local view. Then the 50 peers

closest to the new peer are computed from the local view, and

the suggestion task is assigned to one of the suggesters.

The suggester opens a new connection to the peer that is to

receive the suggestions, completes the handshake, sends a PEX

message containing the suggestions, and closes the connection

again. Should the suggester be unable to contact a peer and

cannot deliver the PEX message it notifies the coordinator.

The coordinator in turn removes the peer from the local view.

As mentioned, besides sending suggestions to the joining

peers we also suggest them to the other end of the desired

connections. The suggestions to already known peers

are delayed until the suggestions to the joining peers

have completed. Delaying the suggestions allows multiple

suggestions to the same host to be grouped while the peers

that are going to be suggested are tested for reachability.

Thus we reduce the overhead and ensure that the suggested

peers are reachable.

C. Evaluation

To evaluate the effectiveness of our PEX suggestion method,

we measured a total of 79 swarms chosen randomly from

the torrents recently uploaded to thepiratebay.se and kat.ph.
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Fig. 6. Histogram of the average distance between the peer receiving the

suggestion and the suggested peers.

Recently uploaded torrents are more likely to have a large

percentage of newly joining peers for which our method is

particularly effective. Our results should also be applicable to

longer running swarms with more peers, assuming that the

suggesting has already started early during the creation of the

swarm. Out of all swarms, we influenced half as described

and left the other half unaffected for comparison. As the

suggestions take some time to take effect, we let the swarm

run for one hour, influenced or not, and then measure its

locality with the method described in Section II. We influenced

a total of 37 swarms by sending 27’599 PEX messages

to newly joined peers, each with 50 suggestions. Figure 6

shows the distribution of the average distance between the

suggested peers and the receiver. On average the suggestions

had a connection length of 867.90 km whereas the average

connection length over all swarms was 6796.50 km. In 755

cases we were able to suggest all 50 peers in the same AS

as the joining peer, i.e., all 50 peers were in the same ISP’s

network.

To measure the effective locality improvement we used

our measurement method described in Section II. Figure 7

compares the locality of individual connections in influenced

swarms and non-influenced swarms. The suggestions increase

the probability of very short connections: the average rate of

connections shorter than 1000 km is 31% in swarms that have

been influenced, while only 24% of connections are shorter

than 1000 km in swarms that have not been influenced.

Overall the influenced swarms exhibit a locality of 0.994 on

average while the non-influenced swarms have an average

locality of 1.062. Thus, our PEX suggestion method achieves

an average improvement of the locality of 6.3%.
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Connection length comparison
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Fig. 7. Comparison of connection lengths between influenced swarms and

untouched swarms.

IV. CONCLUSION

Using a novel technique we were able to infer connections

between peers in BitTorrent swarms. By applying our method

at a large scale we reconstructed the topology of some swarms

and verified that swarms are all but local. We then proposed

a lightweight method to improve the locality of a swarm by

suggesting close by peers. This increases the probability of

creating short distance connections, while not imposing our

decision to the client. This method can be implemented by the

ISPs, which we argue is the party with the largest incentive

to do so.

An improved locality may also have an impact on the energy

consumption of the Internet infrastructure. Chabarek et al. [3]

showed that routers are not power-proportional, i.e., the power

consumption is not proportional to the traffic they route. But

a reduced load on long distance backbones delays the need

for capacity upgrades, saving both the embodied energy of

the devices as well as the active energy consumption for

running them. According to Rhagavan and Ma [17] the Internet

infrastructure, i.e., routers, telecom switches, fiber optics and

copper cables, account for 139.4 TWh/year in electrical energy

consumption and in 542.5 TWh/year in embodied energy. The

assumption that the energy cost of a transmission is linear

to the distance it has to travel allows us to estimate the

impact of our method. With a conservative estimate of 18%

for the traffic share, BitTorrent can be said to be respon-

sible for 27.9 TWh/year in active energy consumption and

108.5 TWh/year in embodied energy.

If applied at a large scale, our method could save up

to 1.7 TWh/year in electricity and up to 8.0 TWh/year in

embodied energy. It could therefore save energy equivalent

to the power consumption of a city like Boston.
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