
An Efficient Real Time Fault Detection and
Tolerance Framework Validated on the Intel SCC Processor

Devendra Rai, Pengcheng Huang, Nikolay Stoimenov and Lothar Thiele
Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich, Switzerland

firstname.lastname@tik.ee.ethz.ch

ABSTRACT
We present a new framework that efficiently detects and tol-
erates timing faults in real time systems. Timing faults are
observed when the inputs and/or outputs of a given system fail
to meet their desired timing properties, such as I/O rates. Most
current approaches either rely on heartbeat monitoring which is
too restrictive; or on statistical or inexact methods which are not
suitable for embedded real time systems. Current approaches
based on the abstract real time model of the given application
are resource intensive, and may not be suitable for embedded
systems. Our framework utilizes active replication, and is based
on already existing timing models for real time applications to
develop fault detection and tolerance strategies. The approach
does not require any timekeeping at runtime, and is efficient
in terms of computational resources used. Experiments using
three realistic applications on the Intel Baremetal SCC demon-
strate the efficiency of our framework, both in memory and
computational resources used.

1. INTRODUCTION AND RELATED
WORK

Modern safety critical systems are often designed to be fail-
silent, i.e., a non-faulty application provides the correct output,
both in the value and time domain, or in case of a fault, stops pro-
viding any output altogether. Thus, such systems are designed
to exhibit any fault only as a timing fault. Specifically, a system
(or a part of it) exhibits a timing fault when one or more of its
inputs or outputs fail to meet the desired timing properties, such
as rates, or deadlines. For safety critical embedded systems, it
is important that timing faults can be detected and tolerated, as
efficiently as possible, in terms of memory and computational re-
sources used. Various techniques already exist, both at the appli-
cation level and at the hardware level, which ensure that all faults
are exhibited solely as timing faults. Brasileiro et. al. describe
the construction of a fail-silent system at the application level,
whereas a patent provides an example of how processors are now
designed to enforce fail-silent behavior, see [6, 10] for references.

Efficient detection of timing faults remains a challenge: In
cases where the application exhibits simple timing behavior,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DAC ’14, June 01 - 05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 $15.00
http://dx.doi.org/10.1145/2593069.2593085.

(e.g., strictly periodic), timeout (e.g., watchdog) based solutions
may be used. Such simple approaches are not effective for use in
applications based on general dataflow process networks, which
are in general asynchronous and can have bursty timing char-
acteristics. Such process networks are generally used to design
and implement streaming applications e.g., radar processing.
Timing fault detection is particularly difficult in such process
networks, since the fault detection logic has to contend with
possible anomalies in the value of the output, as well as its timing.

Such challenges have resulted in the development of inexact
arbitration approaches, which are statistical or probabilistic in
nature, see [4, 5]. Genetic algorithms and neural networks have
also been proposed for use in the arbitration logic, which may
not be suitable for use in real time systems, see [12]. Though
neural networks are capable of learning new and possibly com-
plex fault detection rules, the major problem with this approach
remains the design of appropriate training data which can
cover all possible corner cases. Furthermore, a complex neural
network may have considerable memory and runtime overhead,
and is therefore not suitable to embedded real time systems.

In another approach, a set of processes in the network
share their internal states with each other, and fault detection
strategy is based on the difference in their internal states,
see [9]. Therefore, the application to be monitored for faults
must be specifically designed in a way that all processes make
their internal states observable to the detector. Furthermore,
it is not clear how the approach scales with the number of
processes in the application.

A fault-detection approach based on distance functions works
by monitoring stream properties (e.g., token arrival times),
see [11]. The memory and runtime efficiency of this technique
relies on an approximation of general distance functions with
l-repetitive distance functions. Thus, the technique gains
runtime resource efficiency at the cost of over approximating
the real time properties of the given application leading to false
positives and/or false negatives.

This paper focuses on real time process networks, and
takes a new approach to detecting timing faults by utilizing
analytic real time models for buffer sizing. Such models are
usually co-developed at the design stage of the real time
and safety critical applications. Faults are tolerated using
the active replication technique, which is common in real
time safety-critical systems. The application is treated as
a black-box, whose interface-level timing models are either
available, or can be generated quickly from calibrations, making
our approach applicable to large and complex applications.

Specifically, we solve the following problem in this paper:
Provide a provably correct and efficient mechanism for

detecting and tolerating single timing faults in real time process
networks.

Without loss of generality, we focus on tolerating at most
one permanent timing fault, using two replicas of a given real
time data flow process network. This restriction can be easily
relaxed by adding more replicas to the system, and a more
general setup for tolerating upto n timing faults can be easily
constructed using the principles outlined in this paper. The
main contributions of this paper are summarized as follows:

1. Design of provably correct arbitration mechanisms for
a duplicated real-time process network such that single
timing faults can be efficiently tolerated.

2. Memory and time efficient fault detection algorithms
which do not require any runtime time-keeping.

3. Validation on the Intel SCC processor using three
representative streaming applications.

1.1 Motivational Example
It has already been discussed that detecting timing faults

by present methods is hard. We now show that tolerating
timing faults is not trivial. Consider a simple process network
shown on the top side of Figure 1 that contains processes
and communication channels with FIFO semantics. Part of
the process network, containing all processes and channels
that implement the main functionality, called the critical
subnetwork, is duplicated for fault-tolerance, i.e., we have two
replicas. A set of producer processes provides data tokens
to the critical subnetwork, and a set of consumer processes
consumes tokens from this subnetwork. For the simplicity
of presentation, we assume a single producer and a single
consumer processes, denoted as P and C, respectively, however,
the critical subnetwork can be arbitrarily complex.

A replicator channel duplicates an output stream from a
producer to each replica, whereas a selector channel combines
the streams from the replicas into a single input stream for a
consumer. In the paper, we refer to the process network with
un-replicated critical subnetwork as reference, and to the process
network with two replicas of its critical subnetwork as duplicated.

It is required that at their respective input/output processes,
both in the reference and duplicated process networks, behave
equivalently, even when one of the replicas suffers a single perma-
nent timing fault. We assume that the sequence of data tokens
produced by a process and the process network is independent
of the timing of the network (e.g., Kahn Process Network). All
FIFO queues have bounded capacities. Processes have blocking
semantics. Therefore, a process attempting to write tokens to
a full output FIFO queue, or attempting to read tokens from an
empty input FIFO queue will block, until the said operation can
be successfully completed. For simplicity, assume that only the
critical subnetwork may suffer from a permanent timing fault.

Merging Streams at a Selector Channel. With only two
replicas, arbitration by majority voting is ruled out. Simple
techniques (e.g., timer, heartbeat) are not applicable here since
the given process network may have asynchronous with bursty
timing characteristics. An option is to have a dedicated fault
detection mechanism which can detect faults by observing inter-
nal states of the real time application, but it requires that the
application be redesigned to make its internal states observable.
Additionally, the resulting detector may be too complex to be
used in an embedded real time system. It is therefore desirable
that at the selector we have a fault-tolerance mechanism
that can take into account the possible complex and bursty
behaviour of output streams but it is yet simple and efficient.

Deadlocked Non-Faulty Replicas. Assume that the selec-
tor is able to detect a timing fault in the top replica, and as a

result, the selector stops destructively reading tokens from this
subnetwork. Eventually, the top sub-network stops consuming
tokens from its input, causing the FIFO queue at the replicator
to fill up and the respective producer to block. This in turn
starves the lower (correctly working) subnetwork from process-
ing further tokens, causing the selector to erroneously flag it
as faulty, compromising the reliability of the entire system. A
dedicated fault monitor may be too complex to be used in an em-
bedded real time system. In another approach, a fault tolerant
network can be built to allow replicators and selectors to reliably
exchange messages, which may require significant resources. Al-
ternatively, the replicator may allow non-blocking writes by the
producer process P , requiring that the replicator channel be able
to store an unbounded number of tokens. It is therefore desirable
to have an efficient fault-tolerance mechanism at the replicator
without the need for a reliable communication with the selector.

2. NOTATIONS AND MODEL
For simplicity, we consider a simple dataflow process network

with one critical subnetwork connected to a single producer and
a single consumer via a FIFO queue on either side, see Figure 1.
All presented results are equally applicable to a general model
with the critical subnetwork having multiple input and output
channels. The input and output ports of the critical subnetwork
are denoted by I and O, respectively. Communication between
processes is done via read and write operations on FIFO channels
with finite capacities, and the processes have blocking semantics.
The capacity of a FIFO queue Fi is denoted by |Fi|. We require
that a timing fault does not lead to wrong data (value of a
token) in the application, and hence we assume that the process
network is determinate, i.e., the sequence of tokens and their
values produced by a process network is dependent only upon
the sequence of input tokens, and not upon the timing of token
availability. The producer, the consumer, and the reference
and duplicated process networks have real time characteristics.
Their timing properties can be, for example, specified in terms
of arrival curves or any other real time model. Details on arrival
curves are presented in Section 3, and can also be found in [1].

The fault tolerant system is constructed by duplicating the
critical subnetwork, into replicas R1 and R2, along with nec-
essary FIFOs queues and channels. The replicas have sufficient
design diversity in order to prevent common-mode faults. A spe-
cial replicator channel duplicates the stream from the producer
processP to the corresponding input ports of the replicas, I1 and
I2, respectively. Similarly, a selector channel arbitrates (merges)
the data streams from the output ports of the replicas,O1 andO2

and provides the resulting stream to the consumer process C. A
token produced by a replica Rk on its output channel is denoted
as Tk[j], where j ∈ N+ is the monotonically increasing sequence
number of the said token. A function t : N+ × N+ → R≥0 pro-
vides the timestamp of a token Tk[j], given as t(k, j), indicating
the time instant when the token was produced. We assume that
owing to hardware costs, only a part of the system can be made
reliable, see [8]. Thus, only the processes and channels within the
replicasR1 andR2 are unreliable, whereas the rest of the system
is executing on reliable hardware. Of course, the replicas may be
arbitrarily large and complex applications. We assume that the
system can experience at most a single timing fault, which is even-
tually observed when the faulty replica either stops producing
(or consuming) tokens, or does so at a rate lower than expected.

3. PROPOSED SOLUTION
First we discuss the design of the replicator and the selector

channels. It yields a duplicated process network equivalent
to the reference process network, both in functionality and

process

Replicator Selector

process

FIFO queue

Reference Process Network

Duplicated Process Network

FIFO queue

critical subnetwork

channelsystem

P

input
process critical subnetwork

P

input
process

C

output
process

system

C

output
process

system

Figure 1: The reference and duplicated process
networks. For simplicity, the critical subnetwork has
only one input and output channel(s).

timing, see Section 3.2. Section 3.3 discusses fault-detection
mechanisms in the replicator and the selector while considering
the bounded system memory. Finally, Section 3.4 presents the
necessary mathematical details for queue sizing.

3.1 Replicator and Selector
We assume that all read and write operations to the replicator

and the selector channels to be atomic. A replicator channel
R has two reading interfaces and a single writing interface, and
is described by the following rules:

1. It contains two FIFO queues of sizes |R1| and |R2|
respectively, one for each reading interface. Each queue
has a space and fill variables which are initially set to:
fill1 = fill2 = 0 and space1 = |R1|, space2 = |R2|.

2. Each reading interface of the replicator has a destructive
and blocking read access to the corresponding queue. A
read event increments the corresponding space variable
and decrements the corresponding fill variable.

3. If min{space1, space2} > 0, then a write event to the
write interface queues a token to both FIFO queues,
decrements space1 and space2, and increments fill1 and
fill2, else the write to the replicator is blocked.

In other words, the replicator channel duplicates every input
token to both FIFO queues, each one linked to a read interface.
More efficient implementations utilizing circular FIFO buffers
with two readers are possible, but we retain the simple design
for the present discussion.

A selector channel S has two writing interfaces and a single
reading interface, and is described by the following rules:

1. There are two space variables space1, space2 and a single
variable fill associated with the queue. Initially, we have
fill = 0 and space1 = |S1|, space2 = |S2|. The selector
maintains only a single FIFO queue for the channel, with
size given by |S| = max{|S1|, |S2|}.

2. The reading interface of the selector has a destructive and
blocking read access to the queue. A read event increments
all space variables and decrements the fill variable.

3. A write event to a write interface such as interface 1
blocks if space1 = 0. Suppose now that space1 > 0.
If space1 ≤ space2, then the token to be written by
interface 1 is enqueued in the FIFO, fill is incremented
and space1 is decremented. Otherwise, just space1 is
decremented and the corresponding token is dropped.

In other words, the selector contains two virtual queues, one
for each writing interface. Under fault-free conditions, both
replicas provide the same sequence of tokens to the selector,
and selector must queue the token from a write interface which
provides the first token of each duplicate pair. Therefore, the

selector queues a token from interface 1 if space1 ≤ space2,
else it queues from interface 2. A process can successfully read
from the selector FIFO if fill > 0.

3.2 Equivalence
We show that if the FIFO queues in the replicator are

unbounded, the duplicated process network is equivalent, to
the reference process network, both in functionality and timing,
even if one replica suffers a single timing fault. First, we present
necessary definitions and a lemma.

A sequence of tokens produced by replica Rk is denoted as
Qk = 〈Tk[1], Tk[2], Tk[3], · · · 〉. When a sequenceQ′k is a prefix of
Qk, it is represented asQ′k v Qk. For example 〈Tk[1], Tk[2]〉 v
〈Tk[1], Tk[2], Tk[3]〉. The sequence of timestamps associated
with Qk is given by t(Qk) = 〈t(k, 1), t(k, 2), t(k, 3), · · ·)〉.

We assume that the consumer process has real time
characteristics, and expects at its input only sequences of tokens
that can meet these characteristics. All sequences of timestamps
associated with Qk satisfying the timing requirements of
the consumer are represented by the set TC of sequence of
timestamps. If a sequence Qk with timestamps t1(Qk) satisfies
the requirements of the consumer, i.e., t1(Qk) ∈ TC , then the
same sequence with different timestamps t2(Qk) also satisfies
the requirements of the consumer if some of the tokens arrive
earlier, i.e., we have t2(Qk) ∈ TC , if:

t2(k, j) ≤ t1(k, j) ∀j (1)

We also assume that each replica individually must be able to
satisfy the timing characteristics of the consumer. Therefore, in
a duplicated process network, the timestamps t(Q1) and t(Q2)
produced by replicas R1 and R2, respectively, must satisfy
t(Q1) ∈ TC and t(Q2) ∈ TC .

A pre-requisite to equivalence between the duplicated and
the reference process networks is that the selector isolates the
replicas from each other:

Lemma 1. The selector prevents the output of one replica
from affecting the output of the other, both in value and time.

Proof: From the properties of the process network, and those
of the selector, a replica, say R2 can only delay the tokens from
the replica R1. This delay would be due to any backpressure
caused by R2, which is experienced by R1. However, from rule 3
of the selector, the only variable that governs the back-pressure
felt by R1 is space1. From the construction of the selector, the
space1 variable is never modified by write interface 2 (and vice
versa), and hence, the back-pressure felt by R1 is never caused
(or contributed to) by R2. The lemma follows. �

The functional and timing equivalence between the duplicated
and reference process network is shown next:

Theorem 2. If the replicator has unbounded FIFO queues,
then a sequence QP with timestamps t(QP) provided to the
reference and duplicated process networks results in the same
output sequence QC from both the reference and duplicated
networks, even if the duplicated process network suffers a single
timing fault. Furthermore, if the timestamps of the sequence
generated by the reference process network t(QC) ∈ TC , then
the sequence of timestamps t′(QC) generated by the duplicated
process network is also in TC .

Proof: Since the replicator FIFO queues are unbounded,
min{space1, space2} > 0 (rule 3 of the selector) is always
true, and consequently, a replicator channel always duplicates
each token to both input ports I1 and I2 of the replicas.
Furthermore, the replicator does not change the timestamp
of a token when it inserts it into both FIFO queues. Thus, a
sequence QP with timestamps t(QP) at the write interface

of the replica always results in the same sequence QP , with
the same timestamps, at I1 and I2.

Under no fault conditions, the replicas are determinate but
non-deterministic in timing characteristics, therefore, given the
same input sequence QP with timestamps t(QP), the replicas
produce at their output ports output sequences Q1 = Q2, with
non-equal sequences of timestamps t(Q1) 6= t(Q2) respectively.

Next, the selector evaluates which replica has provided
the most recent token of a duplicate pair, by evaluating
space1 ≤ space2. If space1 ≤ space2, then the replica R1 has
provided the first token of the most recent duplicate pair, which
is queued into the FIFO, and the selector simply discards the
corresponding late arriving token from R2. In other words, the
selector queues the earlier arriving token from each duplicate
pair into its FIFO, resulting in a sequence QC = Q1 = Q2 with
timestamps t(QC). Since t(Q1) ∈ TC and t(Q2) ∈ TC , then
as in (1), we have t(QC) ∈ TC (also see Lemma 1).

If replica R1 experiences a timing fault at any instant t, then
eventually, we haveQ1 v Q2 and space2 ≤ space1, and the selec-
tor simply queues the tokens from replicaR2. The timestamp of a
token missing inQ1 but with a corresponding token inQ2 is taken
to be infinity, and therefore timestamps of the tokens produced
by the selector subsequent to a fault correspond to those fromR2.

For comparison, given QP , the reference process network
produces a sequence QC = Q2, which is the same output
as the non-faulty replica R2 produces (since the replicas are
determinate and are derived from the reference process network).
Furthermore, if the reference process network meets the timing
requirements of the consumer, then t(QC) ∈ TC . �

3.3 Fault Tolerance with Bounded Memory
We assume that the reference process network has been

designed correctly, i.e., all FIFO queues have been sized
appropriately such that a producer never blocks on a full FIFO
queue, and a consumer never stalls on an empty FIFO queue.

In order to ensure that the reference process network and
the duplicated process network are equivalent even when the
latter experiences a single timing fault, it is required that in the
duplicated process network, the producer never blocks on a full
replicator FIFO queue possibly associated with a faulty replica
(the selector channel already has bounded memory). Therefore,
functional and timing equivalence between duplicated and
reference process network requires that the selector and the
replicator channels be able to autonomously detect timing
faults and prevent producer and consumer from blocking and
stalling, respectively.

Fault Detection at the Replicator Channel. First note
that the replicator FIFO queues with capacities |R1| and |R2|
should never overflow under fault free conditions. Therefore,
a replica, say R1, is deemed faulty if the actual number of
tokens in the associated FIFO attempts to exceed |R1|, causing
the producer to block on the full FIFO. In other words, if
space1 = 0 when the producer attempts to write a token, then
the replica R1 is faulty. We introduce variables fault1 and
fault2 for the replicator channels, each initialized to FALSE.
If space1 = 0 when the producer writes a new token to the
replicator, then fault1 = TRUE, and the replicator does not
insert new tokens into this FIFO. Similar arguments also apply
to the case with a fault in replica R2.

This also makes it possible to detect a timing fault wherein
the rate at which a replica consumes tokens from the producer
is lower than predicted at design time.

Fault Detection at the Selector Channel. There are two
methods for detecting a fault at the selector. The first method
is simple: the replica R1 may stall the consumer (and is hence
faulty) if space1 > |S1|, and similarly for R2. The second
approach is based on the intuition that if both replicas serve and
satisfy timing bounds imposed by a common consumer, then the
outputs from both replicas must not diverge too much from each
other. The divergence is quantified by the difference in total num-
ber of tokens received by the selector over both input channels.
Therefore, the selector monitors the difference |space1− space2|
and if the difference exceeds a threshold D, then the replica R1

is faulty if space1 > space2, else R2 is faulty. The details will be
elaborated in the next section. The rule 3 of the selector can be
easily modified to include fault detection at the selector channel.
Notice that this approach naturally also enables detection of tim-
ing faults wherein the actual rate at which a replica supplies to-
kens to a consumer falls below the one calculated at design time.

3.4 FIFO Conditions and Threshold Calcula-
tions

We present brief mathematical formulations for deriving
FIFO capacities and thresholds in this section.

FIFO Capacities and Initial Fill Conditions. Let
GP [s, t) denote the total number of tokens generated by a
producer in the interval [s, t). Then, the upper and lower arrival
curves, [αuP , α

l
P] denote the maximum and minimum number of

tokens generated by the producer in any time interval4, see [1]:

αlP (t− s) ≤ GP [s, t) ≤ αuP (t− s) ∀s < t (2)

Equation (2) is either provided as a part of the timing model, or
is derived from calibration experiments. Let [αui,in, α

l
i,in] be the

maximum and minimum number of tokens consumed by a replica
Ri | i ∈ {1, 2} in any time interval 4. We require that the pro-
ducer never blocks on its output FIFO, i.e., FP in reference net-
work, and equivalently, FIFO queuesR1 andR2 in the replicator
channel. The required capacity of the FIFO |FP | (equivalently,
the capacities |R1| and |R2|) is given by the relation:

αuP (4) ≤ αli,in(4) + |FP | ∀4 ≥ 0 (3)

Notice that it is acceptable that the replica(s) may stall on
empty FIFO queues R1 and R2 as long as the consumer does
not stall on its empty input FIFO queue. That the consumer
does not stall on its empty FIFO queue, i.e., FC in the reference
network, and S1, S2 in the duplicated process network, requires
an initial number of tokens, FC,0:

αli,out(4) ≥ αuC(4)− FC,0 ∀4 ≥ 0 (4)

where αli,out(4) is the minimum number of tokens produced by
the replica Ri, and αuC(4) is the maximum number of tokens
consumed by the consumer, in any time interval 4 respectively.

Threshold Calculations. We present the calculations only
for the selector channel, and computations for the replicator
channel are analogous. The difference in the total number of
tokens received from both replicas, D over any time interval
4 is bounded by finding the smallest integer D satisfying the
following inequality:

D > sup
∀i,j,i 6=j,λ≥0

{αui,out(λ)− αlj,out(λ)} (5)

where sup is the supremum of a set. The equation can be easily
verified by applying the definition of arrival curves. Notice that
(5) guarantees that there are no false-positives.

Table 1: Parameters for Fault Tolerance Experiments

Fault Detection Times. A replica is considered to have
suffered a timing fault when it fails to meet the timing properties
at its interfaces, and not when a particular node(s) inside the
replica may have experienced a fault. Suppose that at time s,
R1 and R2 have produced a total of T and T − (D − 1) tokens
respectively, when R1 suffers a timing fault. Subsequently, R2

must produce a (D − 1) +D = 2D − 1 tokens more than R1

before the selector can detect a fault. Let the fault be detected
at time t. For maximum fault detection time, let the replica
R2 supply tokens at the lowest possible rate, i.e., its arrival
curve subsequent to the fault is αl2. Let αu1 indicate the upper
arrival curve of R1 subsequent to the fault, which still fails to
meet the required real time constraints. The maximum time to
detect the fault, relative to s is given by 4 (4 = t− s) satisfies:

inf{4 | (αl2 − αu1)(4) ≥ (2D − 1)} (6)

where inf is the infimum of a set. Generalizing the streams,
the maximum fault detection time is:

max
∀i,j,i 6=j

{inf{4 | (αli − αuj)(4) ≥ (2D − 1)}} (7)

For the case when the faulty replica stops producing any tokens
altogether, (7) can be simplified to:

max
∀i
{inf{4 | (αli)(4) ≥ (2D − 1)}} (8)

4. EXPERIMENTS AND RESULTS

Bytes sent/received every time the
communication interface is called

MJPEG Decoder

ADPCM

Replicator(System)

003K

750B

750B

3K
3K

02

12
Encoder

04

14
Decoder

Selector

16

(System)

4

64
7.68K

(System sending
encoded frame)

02
Replicator

04

28

splitstream

06

splitframe

30

18

iqzigzagidct

42

20

mergeframe

44

22

Selector (Display)
10K

4

4

307.2K

64
4

8

76.8K

76.8K

8

7.68K

8
10K
10K

10K

3KSCC Core where process in
Replica 1 is mapped02 SCC Core where process in

Replica 2 is mapped12

8
10K

3K 3K
3K

307.2K

Figure 2: The MJPEG Decoder (top) and the
ADPCM Application (bottom).

4.1 Hardware Platform
We used Intel’s 48-core Single Chip Cloud Computer(SCC)

for experiments, see [7]. Real time performance was achieved
by using the SCC in the baremetal mode (i.e., without any
operating system support), switching off all L2-caches and
disabling all interrupts, see [14]. Furthermore, only one process
was mapped per tile in a way which reduces cross traffic at
the routers, see [13]. The SCC was booted with the following
parameters: tile frequency: 533MHz, Router frequency:
800MHz, DDR3 Memory frequency: 800MHz. Furthermore,
timing measurements of each core are derived from the local
time stamp counter (TSC). All clocks are synchronized at
application boot time in order to get valid timing results. The
iRCCE non-blocking communication library was used, and

Table 2: Results for the MJPEG decoder and the
ADPCM Application.

all data was sent/received in chunk sizes not exceeding 3KB,
ensuring that all messages are routed exclusively via the message
passing buffers, see [2, 3]. The fast on-chip communication does
not significantly influence FIFO sizes or fault detection timings.

4.2 Applications
Three representative real time process network based

applications were used for experiments: (a) a Motion JPEG
(MJPEG) decoder (b) the Adaptive Differential Pulse Code
Modulation (ADPCM) application (encoder+decoder) and (c)
an H.264 encoder. The experiment was repeated with the H.264
encoder with similar results. Due to space constraints, we do not
present the results in the paper. The design diversity between
the replicas is captured by different jitter values, see Table 1.
All timing parameters are reported as <period, jitter, delay>
tuple, as is common in real time systems. In case of a fault, the
faulty replica stops producing (or consuming) tokens altogether.

The MJPEG Decoder. For the fault tolerant MJPEG de-
coder, the input to the replicas is an encoded frame (∼ 30 fps).
The replicator channel duplicates each token and provides it
to the splitstream process in each replica. The mergeframe pro-
cess(s) provides decoded frames to the selector, 320x240 pixels
each. A token at the replicator and the selector channel is one en-
coded and decoded frame of sizes 10KB and 76.8 KB respectively.
Note that it is possible to reduce token sizes by restructuring the
application: i.e., split input frames into parts, and split decoded
frames into parts. However, such adjustments depend on the
application and the fault-detection latency requirements and
are independent of the fault tolerance framework itself. After
18,000 frames, timing faults were introduced into the duplicated
network and fault detection times are reported over 20 such runs.

The ADPCM Application. The system provides one data
sample to the replicator every of 3KB every ∼ 6.3ms. Note
that the decoder rate is specifically tuned for the SCC. The

encoder performs a 4:1 compression, which is reverted by the
decoder. A token at both the selector and the replicator is
one data sample of size 3KB. After 20,000 samples, faults were
introduced in the ADPCM network, and fault detection times
for 20 such runs are summarized.

4.3 Evaluation of the Framework
The framework described in this paper is evaluated on the

basis of (a) runtime overhead of the framework, (b) memory over-
head of the framework (c) fault detection latencies and (d) com-
parison to distance function fault detection approach, see [11].

Results and Discussion. For all duplicated process networks,
results in Table 2 show that under fault free conditions, the
observed maximum number of tokens in various FIFO queues is
below theoretically computed capacities (Theoretical Capacity
vs. Max. Observed Fill) validating the calculations presented in
Section 3.4. The framework is extremely light, in both runtime
and memory overhead. For example, the memory overhead in
the case of the duplicated MJPEG decoder is 0.7 % and 0.5 % of
the application code at the replicator and the selector channel
respectively (excluding token storage, which depends on the
application). The corresponding time overhead is at most 0.02%
of the decoder inter-frame period. The overhead is practically
found to be small enough that the duplicated and reference
process networks can provide similar runtime performance. For
example, for the MJPEG decoder, the decoded frame rate is
almost identical (differences due to runtime overhead are in the
order of microseconds) for both the reference and the duplicated
process networks. Similar results hold for other applications.
The framework detects faults within the bounds computed in
Section 3.4, as can be seen by comparing fault detection latency
statistics for each application vs. the computed upper bound.
For instance, for the MJPEG decoder, the maximum latency
for detecting a fault was found to be 103ms at the replicator
channel, well within the computed upper bound of 180ms.
Similarly, the maximum fault detection latency at the selector
channel was found to be 102ms against the expected upper
bound of 180ms. Notice that the in practical situations (i.e.,
in the experiments), the actual faults are detected much faster
than the computed worst case bounds, since worst cases are
only rarely encountered. Notice that the upper bounds for fault
detection latency are not always symmetrical (e.g., the H.264
application). Also note that the selector and the replicator can
independently detect faulty replicas as proposed in the paper.

Brief Comparison to the State-of-the-Art. We present a
brief comparison to distance function approach as it is superior
to the simple watchdog method. For fault monitoring at the
replicator, timing variations from the replicas were minimized,
enabling the distance function to be implemented with l = 1.
For monitoring at the selector side, the timing variations from
the consumer was removed (replicas may have timing jitters).
The fault-monitor itself was slightly modified to take into
account the fail-silent fault model assumed in this paper. The
results comparing fault detection latencies at the replicator
are summarized in Table 3. Notice that the performane of our
method is similar to distance function method without requiring
any runtime timer support. The fault detection latencies at
the selector are similar, and therefore, are not shown.

Brief Discussion. Note that the fault detection latencies
using the detection approach is always greater than our method.
This is solely due to the choice of having a 1ms polling interval
and having non-integer application periods (e.g., 6.3ms for
the ADPCM application). In principle, it is possible to set

the polling interval at a finer granularity, but at the cost
higher resource overhead. In summary, at the cost of four
timers (two at the replicator and two at the selector) and some
modifications to the distance function approach, both fault
detection techniques are equivalent.

Table 3: Comparison of our proposed approach with
distance function approach.

5. CONCLUDING REMARKS
We presented efficient (i.e., memory and runtime overhead)

arbitration logic (the selector and the replicator channels)
together with simple timing fault-detection strategies to
construct a fault-tolerant real time process network. We showed
that the fault tolerant network is equivalent in functionality
and timing to the original process network it was derived from.
Our approach is scalable, since it is based on (already available)
timing models of real time applications. The proposed fault
detection framework was validated by extensive experiments on
the state-of-the-art many core processor, the Intel SCC. We are
also grateful to Mark Aughenbaugh from Intel IT client services
for the support he has extended to us for the SCC processor.

6. REFERENCES
[1] Chakraborty, S. et.al. Interface-based rate analysis of embedded

systems. In Real-Time Systems Symposium, 2006. RTSS ’06.
27th IEEE International, pages 25–34, 2006.

[2] Clauss, C. et. al. Evaluation and improvements of programming
models for the intel scc many-core processor. In High
Performance Computing and Simulation (HPCS), 2011., pages
525–532, 2011.

[3] Devendra Rai et. al. Designing Applications with Predictable
Runtime Characteristics for the Baremetal Intel SCC. Runtime
and Operating Systems for the Many-core Era (ROME), 2013.

[4] Goseva-Popstojanova, K et. al. Performability and reliability
modeling of n version fault tolerant software in real time systems.
In Proc. 23rd EUROMICRO Conference, pages 532–539, 1997.

[5] Hagbae Kim et. al. Evaluation of fault tolerance latency from
real-time application’s perspectives. Computers, IEEE
Transactions on, pages 55–64, 2000.

[6] Hopkins, A.L., Jr. A highly reliable fault-tolerant multiprocess
for aircraft. Proc. IEEE, pages 1221–1239, 1978.

[7] J. Howard et al. A 48-Core IA-32 Message-Passing Processor with
DVFS in 45nm CMOS. In Proc. ISSCC, pages 108–109, 2010.

[8] Ian A. Troxel et.al. Reliable management services for cots-based
space systems and applications. In Proc. International Confer-
ence on Embedded Systems &Applications, pages 169–175, 2006.

[9] Meng Guo et. al. Distributed real-time fault detection
and isolation for cooperative multi-agent systems. In American
Control Conference (ACC), 2012, pages 5270–5275, 2012.

[10] B. D. Milburn. Apparatus and method for initializing
a master/checker fault detecting microprocessor, 1998.

[11] Neukirchner, M. et. al.
Monitoring arbitrary activation patterns in real-time systems. In
Real-Time Systems Symposium (RTSS), pages 293–302, 2012.

[12] P.R. Croll et. al. Dependable,
intelligent voting for real-time control software. Engineering
Applications of Artificial Intelligence, pages 615 – 623, 1995.

[13] Zimmer, C. et. al. Low contention mapping of real-time tasks onto
tilepro 64 core processors. In Proc. Real-Time and Embedded
Technology and Applications Symposium, pages 131–140, 2012.

[14] M. Ziwisky et al. BareMichael: A Minimalistic Bare-Metal
Framework for the Intel SCC. In Proc. MARC, pages 66–71, 2012.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

