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Abstract

Applications for parallel and distributed embedded systems are often specified as dataflow graphs with depen-
dency cycles. Examples of corresponding models of computation are marked graphs or synchronous data flow
graphs. Performance analysis is often used in the exploration of different implementation alternatives or in order
to provide guarantees on the timing behavior. This paper describes a new approach to the modular performance
analysis of cyclic dataflow graphs such as SDF graphs as existing component-based analysis methods are not
able to faithfully deal with cycles in the event flow. The new method results in tight bounds on essential quantities
like buffer sizes, end-to-end delays and throughput. Because of the generality of the approach, one can analyze
not only systems that can be modeled as marked graphs but also implementations that contain buffers with finite
sizes, that produce system-wide back-pressure caused by blocking write semantics. The embedding of the novel
approach into a modular performance analysis method allows the analysis of distributed implementations that use
resource sharing mechanisms such as fixed-priority scheduling and TDMA. The paper presents the new models
and methods as well as experimental results.

1 Introduction

Applications that are implemented on distributed embedded systems can often be specified using dataflow
graphs where nodes correspond to processes, and edges correspond to communication channels with a first in first
out (FIFO) buffer semantics. In particular, this observation holds if the underlying algorithms perform computa-
tions on streaming data which is common for control-, media-, signal-, image- and transceiver-applications. This
model of computation has received a lot of interest in the past as it naturally fits to distributed implementations, for
example heterogeneous multiprocessors, MPSoC (multiprocessors on a chip) and large scale distributed systems
in automotive and avionics. There are several subclasses of dataflow models such as Kahn Process Networks,
Marked Graphs [20], and Synchronous Dataflow Graphs [16], for an overview see [17]. Many results are available
concerning their deadlock behavior, schedulability, and mapping onto multiprocessor systems [2, 25].

The performance analysis of applications that have been mapped onto distributed or parallel computation and
communication platforms has received much attention recently, see e.g. [5, 12, 21, 27]. It enables the analysis
of essential system characteristics such as end-to-end delays, upper bounds on buffer spaces, and throughput. It



is based on information about the worst-case execution times, communication times, and the resource sharing
strategies. The formal analysis can be used for design space exploration, e.g. binding of processes to computing
resources, mapping of channels to communication paths, and selecting scheduling strategies, or for final verifica-
tion of system properties after the design step.

In many of the above mentioned application domains we are faced with applications that contain cyclic depen-
dence behavior where the result of a certain process output may depend on previous outputs of the same process,
possibly transformed via a set of intermediate processes. Such applications exhibit iterative behavior that is com-
bined with loop carried dependencies. Another prominent example is related to the use of finite buffers in the
implementation of a given application which is usually modeled as a one which has infinite buffers but contains
additional cyclic dependencies.

However, the analysis of cycles in the dataflow of applications poses tremendous difficulties for performance
analysis, in particular for any modular and component-based approach. The cycles in the information flow between
the individual processes of the application lead to global, system-wide state dependencies. As a result, the timing
behavior of a process (and as a result its use of the available resources) not only depends on predecessor processes
that provide the data streams that are to be processed, but also on successor processes and the process itself. A
typical special case is the use of finite buffers with blocking write semantics: If they are full, they put back-pressure
to preceding process executions and may cause a system-wide slow-down or even blocking. Ignoring dependency
cycles, for example by just cutting them or by replacing finite buffers by infinite ones, leads to unsafe performance
analysis results.

Following the above discussion, there is a need for extending the model of computation that can be handled
efficiently by modular component-based performance analysis methods towards cyclic behavior in the event flow.

1.1 Related Work

The present paper specifically deals with a subclass of dataflow graphs called marked graphs, see e.g. [20, 23].
They are characterized by the fact that each process can fire if there is at least one token in each input queue and
the firing adds one output token to each output queue. For graphs where each process has a fixed delay (execution
time), there are many results in the literature that characterize the timing behavior. They all suppose that there
is a fixed deterministic processing time for tokens in each node. Early results in [23] have been generalized and
connected to eigenvalue problems in max/plus algebra, see [1, 7] and more recently [10]. The results are not
directly applicable to more complex interaction with the resources as envisioned in this paper: non-deterministic
delays, various resource sharing mechanisms such as TDMA and fixed priority, non-deterministic timing behavior
of input streams.

The class of synchronous dataflow graphs (SDF) has been introduced in [16] as an untimed model. Unlike
marked graphs, they are characterized by fixed token consumption and production rates other than 1. Because of
the practical importance of this model of computation, many results are available that describe properties of an
implementation on single or multiple processors. The processes in an SDF graph, also called actors, are annotated
with execution times for analysis [25]. The above mentioned restrictions on the scope of the performance analysis
for marked graphs also hold here.

Very often, SDF graphs are converted to equivalent marked graphs, also denoted homogeneous SDF graphs
(HSDF) [25], for the purpose of performance analysis. The same method can be used by the analysis framework
described in this paper. Therefore, the new results can be generalized to the class of SDF graphs as well.

Acyclic dataflow graphs with fixed token consumption and production rates of processes as well as finite buffer
capacities can be modeled as SDF graphs by adding to each edge with finite buffer an edge in the opposite direc-
tion which represents the available capacity. Based on this concept, there have been several results based on the
classical delay models, e.g. computing buffer sizes under throughput constraints, see [29], and computing through-
put while respecting sequence constraints by additional edges, see [22]. In all of these cases, resources are not
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explicitly modeled and therefore: (a) only limited resource sharing methods can be analyzed, and (b) modularity
and composability is limited.

More complex interactions between resources and process executions can be faithfully modeled using the
closely related concepts of dioids [1] and network calculus [6, 8, 15]. The concepts of arrival and service curves
allow a much more general modeling of the system environment and has been applied to model communication
networks. In [3], results from [6] have been applied to chains of processes with finite buffer sizes. Recently, very
similar results have been described in [4]. These results are restricted only to systems with finite buffer sizes,
use course-grained approximations of resources as the maximal processing or communication capability is set to
infinity, and they are not compositional in terms of resources, i.e. they are pessimistic for systems with resource
sharing.

The SymTA/S approach [12] has been extended towards cyclic data dependencies in [13]. The analysis is based
on classical real-time analysis, i.e. worst-case response times. By iterating relations for individual processes, the
overall system behavior is obtained, see also [27]. The approach is limited in terms of traffic models, i.e. periodic
with jitter and bursts, as well as in terms of resource models. Recently, the SymTA/S approach has been extended
towards the class of SDF graphs, see [24]. Here, an SDF application is encapsulated by providing input and output
interfaces to it. The analysis of the dataflow graph itself is based on the classical results described above as well as
simulation. Therefore, they are restricted to simple delay-based resource interactions with upper and lower bounds
on the execution times.

Recently, the above models and methods have been generalized to distributed real-time systems, denoted as real-
time calculus (RTC) and modular performance analysis (MPA) [5, 28]. The method allows to consider complex
communication and computation resource models, scheduling policies such as fixed priority, EDF, TDMA and
hierarchical using servers. On the other hand, complex state-dependent behavior such as cyclic data-dependencies
as in marked graphs can not be modeled as well as implementations with finite buffer sizes. Recently, there
have been extensions towards cyclic resource dependencies [14], which do not extend directly to cyclic dataflow
dependencies as described in this paper. In addition, the MPA framework has been extended towards AND/OR
activations as described in [11] which are essential components in dataflow graph representations however, cycles
in the dataflow have not been tackled.

1.2 Contributions

In summary, the problem statement can be formulated as follows: Given a set of marked graphs as depicted in
Figure 1 that share a set of computation and communication devices by means of e.g. fixed priority scheduling
or TDMA (time division multiple access) and show a complex interaction with the environment. MG1 (marked
graph 1) has bounded buffers between processes v1 → v2 and v2 → v3 limited to a maximal size of 1 and 2,
respectively. Determine essential system characteristics such as end-to-end delays, buffer sizes and throughput of
the whole system.

The paper presents the following new results:

• Modular performance analysis methods are extended to the class of marked graphs. Unlike other known
methods, the approach takes into account a general model for resource interaction based on the concept of
service curves that covers ’periodic’ and ’bounded delay’ resource models as special cases, and a general
stream model that covers ’periodic’, ’periodic with jitter/bursts’ and ’sporadic’ as special cases.

• The analysis covers systems with cyclic data dependencies, finite buffer sizes, non-deterministic resource
behavior, TDMA and fixed priority scheduling policies. It can also be embedded into compositional frame-
works such as SymTA/S or MPA.

• Performance bounds are obtained by using upper and lower bound representations which yield higher accu-
racy than known methods.

3



MG1: high priority

MG2: low priority

P1 P2 P3

Figure 1: Visualization of problem statement where two marked graphs are mapped to a distributed platform and
the individual processes share the available resources using some scheduling scheme.

• Experimental results are provided that show the applicability of the new method to selected case studies and
the advantages with respect to known approaches in terms of accuracy of the results.

The paper describes a stepwise abstraction that leads from a characterization of a marked graph in time domain
to an abstract representation in time interval domain which is then used to (a) determine essential performance
indicators and to (b) embed the analysis into a compositional framework. Section 2 contains the time domain
characterization and introduces the essential notation of a service function to describe resources. Section 3 intro-
duces an abstraction of the service function, i.e. it represents resource capabilities in the time interval domain and
analyzes marked graphs under this abstraction. Section 4 introduces the final abstraction, namely the representa-
tion of data streams in the time interval domain which is the main prerequisite for modular performance analysis.
Section 5 contains the experimental results that show the applicability and tightness of the analysis.

2 Model Definition

In this section, we will define the basic elements of the analysis framework. The analyzed system will be
modeled as a marked graph, i.e. as a set of processes that (a) communicate via FIFO buffers with unlimited
capacity and (b) at the time of firing, consume and produce one token at any input and output, respectively. Finite
size buffers will be modeled using cycles in the dataflow graph.

2.1 Dataflow Graph

Let us first define a generic dataflow graph, i.e. the basic underlying model of the forthcoming analysis, see
also Figure 1.

Definition 2.1. A dataflow graph (V,E, M) is defined as a set of processes v ∈ V and a set of channels e ∈ E
where E ⊆ V × V . To each channel there is associated a number of initial token M : E → R≥0, i.e. mij ∈ R≥0

denotes the number of token associated to channel eij = (vi, vj) connecting process vi ∈ V with vj ∈ V .

The term ’token’ is used in a very general sense. It should be interpreted as any amount of data, not necessarily
integer. This way, we will be able to model systems in a flow-based as well as in a discrete-event setting.
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It will be useful to assign input and output ports to each process vi ∈ V . We denote the input port of vi

associated to channel eji = (vj , vi) as (j, i) and the output port associated to eik = (vi, vk) as (i, k).

2.2 Arrival Functions

The timing properties of an event stream can be described using the concept of an arrival function R: R(t) ∈
R≥0 which denotes the number of token that arrived in the time interval [0, t), t > 0, and R(0) denotes the initial
number of token in the stream.

It will be useful for the analysis if we partially order the set of all arrival functions. In particular, we say that
R ≥ R′ if and only if R(t) ≥ R′(t) for all t ≥ 0. If we are dealing with n-dimensional vectors of arrival functions
R = (Ri : i = 1, ..., n), then we say that R ≥ R′ if and only if Ri(t) ≥ R′

i(t) for all t ≥ 0, i = 1, ..., n.
It is known from lattice theory, see e.g. [9], page 63, that the set of arrival functions ordered by ≥ as defined

above forms a complete lattice. The bottom ⊥ and top > element of the set are defined as 0 and ∞ for all t ≥ 0,
respectively, where > ≥ R ≥ ⊥ for all arrival functions R. The ’complete’ means that there exists a least upper
bound and a greatest lower bound for each finite or infinite subset of arrival functions.

Example 2.2. Figure 2 shows two examples of arrival functions. R1 represents a periodic arrival pattern of
discrete tokens with period p and R2 represents a continuous flow with rate ρ/σ. In both cases, the streams of
token start at time τ .

Figure 2: Two simple arrival functions.

2.3 Processes and Mappings

The operation of a single process vi can be described as the mapping from a vector of input arrival functions to
a vector of output arrival functions. The input arrival function Rin

ji is associated to an input port (j, i) of vi and the
output arrival function Rout

ik is associated to an output port (i, k).

Definition 2.3. A process vi ∈ V with n input ports and m output ports maps an n-dimensional vector of input
arrival functions Rin to an m-dimensional vector of output arrival functions Rout by means of a deterministic
mapping Πi, i.e. Rout = Πi ◦ Rin where Rin = (Rin

ji : eji ∈ E) and Rout = (Rout
ik : eik ∈ E). We will also call

the mapping Πi, the transfer function of process vi.

In the following, we will restrict ourselves to the class of monotone processes. Loosely speaking, if we consider
two distinct traces and we feed more token to a process in one of them (Rin ≥ Rin), than the process does produce
at least as many output token as for the other one (Rout ≥ Rout).

Definition 2.4. A monotone process Π satisfies: R ≥ R ⇒ Π ◦R ≥ Π ◦R.

5



Note that not all possible processes satisfy this condition. Nevertheless, a large class of interesting processes
are monotone, e.g. the considered class of marked graphs.

Example 2.5. A simple process type is denoted as AND. It fires immediately when there are token available at all
of its input ports. If we restrict it to two inputs Rin

1 and Rin
2 , we find its transfer function as

AND: Rout(t) = min{Rin
1 (t), Rin

2 (t)}. (1)

2.4 Service Function and Greedy Processing Components (GPC)

The elementary process described in the above example does not interact with available resources at all. On the
other hand, it would be highly desirable to express the fact, that a process may need resources in order to operate
on available input token. The concept of a service function C allows us to describe the availability of a resource
(such as a processor or a communication device). C(t) ∈ R≥0 denotes the number of token that can be processed
in the time interval [0, t), t > 0 where C(0) = 0. In this paper, the unit of the service function is the same as the
one of the arrival function, more general concepts for characterization of these units are described in [18].

Example 2.6. Note that the concept of service functions allows us to model any complex resource behavior, i.e.
the resource may be available with a resource rate of 1 token unit in [0, t1) and not available in [t1, t2) which is
the case when another task is running on the resource or other data are communicated, or the time slot allocated
to the process has finished. This is expressed with C(t) = 1, 0 ≤ t < t1 and C(t) = 0, t1 ≤ t < t2.

Now, let us consider a component with a single input which uses a resource. It takes an input arrival function
Rin(t) and produces an output arrival function Rout(t) by means of a service function C(t). Input token are
processed, always when there are resources available. Therefore, we call the corresponding process a greedy
processing component (GPC).

Definition 2.7. A greedy processing component (GPC) with service function C is defined by the transfer function

GPC: Rout(t) = inf
0≤λ≤t

{Rin(λ) + C(t)− C(λ)}. (2)

The remaining unused service from such a component is given by

C ′(t) = C(t)−Rin(t). (3)

The above definition can be related to the intuitive notion of a greedy process as follows: The output between
some time λ and t can not be larger than the available service: C(t)− C(λ), and therefore, Rout(t) ≤ Rout(λ) +
C(t) − C(λ). As the component can not output more than what was available at the input, we have Rout(λ) ≤
Rin(λ) and therefore, Rout(t) ≤ Rin(λ) + C(t)−C(λ). There is some last time λ∗ before t when the buffer was
empty. At λ∗, we clearly have Rout(λ∗) = Rin(λ∗). In the interval from λ∗ to t, the buffer is never empty and all
available resources are used to produce output token: Rout(t) = Rout(λ∗) + C(t)− C(λ∗) = Rin(λ∗) + C(t)−
C(λ∗). As a result, we obtain (2).

Note that the above resource and timing semantics model almost all practically relevant processing and com-
munication components, e.g. processors that operate on tasks and use queues to keep ready tasks, communication
networks and buses, etc. As a result, we are not restricted to modeling processing time with a fixed delay. The
service function can be chosen to represent a resource that is available only in certain time intervals (e.g. TDMA
scheduling) or which is the remaining service after a resource has been used for other higher priority tasks (e.g.
fixed priority scheduling).

Following the above results, we can define the notion of a Greedy Marked Graph Process, and say that an
activated Greedy Marked Graph Process simultaneously removes token from each input channel and adds token
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to each output channel with a rate that is determined by the available service. A Greedy Marked Graph Process is
activated if there is a positive number of token in each input channel.

Using the above characterization and (1), (2), it follows that a Greedy Marked Graph Process can be modeled
as a concatenation of an AND and a GPC component as shown in Figure 3.

AND GPC

marked graph node greedy marked graph process

Figure 3: Marked graph node and its representation as a greedy marked graph process.

2.5 Execution Semantics of Marked Graphs with Greedy Processes

In this section, we move one step further towards the performance analysis of marked graphs with cyclic de-
pendencies. To this end, we first define the operation of a network of greedy process nodes using fixed points of a
system equation. Note, that we are still describing the operation of the marked graph in time domain, i.e. without
any sort of abstraction.

In order to determine the semantics of a marked graph, we will derive a set of system equations. To this end, let
us first define a step function with height s:

Is(t) =
{

0 if t = 0
s if t > 0

If we now look at the semantics of a channel containing s initial tokens, it provides at its output as many tokens as
have been submitted to its input plus the number of initial tokens s.

Now, we can set up a set of equations that describe the semantics of a whole marked graph (V,E, M)

(Rout
ik : eik ∈ E) = Πi ◦ (Rin

ji : eji ∈ E) ∀vi ∈ V, (4)

Rin
ij = Rout

ij + Imij ∀eij ∈ E, (5)

where Πi denotes the input-output transfer function of a single greedy marked graph process vi. If we combine
(4) and (5), we get a single equation of the form

R = Π ◦R, (6)

where R = (Rout
ij : eij ∈ E) is a vector of arrival functions that contains as elements all output arrival functions

of processes and Π is the combined mapping of the whole dataflow graph. Note that, the combined mapping Π is
monotone if all process mappings Πi, vi ∈ V are monotone.

In order to solve (6), we can use results from lattice theory, see [9], page 187. It follows that if the mapping Π
is monotone, then the fixed-point equation (6) has a least and a greatest fixed-point, Rl and Ru, respectively.

We can strengthen this result by assuming δ-causality for all processes of a dataflow graph, i.e. changes at the
input of a process are not visible before a (small) time lag δ > 0: if R(s) = R′(s) for all s ≤ t − δ then we
have (Π ◦ R′)(t) = (Π ◦ R)(t). Then we can determine all solutions of (6) inductively, starting from the initial
conditions at t = 0. As the mappings of the processes are deterministic, the solution to (6) is unique.
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Example 2.8. Let us look at the simple dataflow graph MG1 shown in Figure 1 and determine the corresponding
mapping R = Π ◦R by concatenating (1) and (2):

Rout
1,2 (t) = inf

0≤λ≤t
{Rout

2,1 (λ) + I1(λ) + C1(t)− C1(λ)},

Rout
2,3 (t) = inf

0≤λ≤t
{min{Rout

3,2 (λ) + I2(λ), Rout
1,2 (λ)}+ C2(t)− C2(λ)},

Rout
3,2 (t) = inf

0≤λ≤t
{Rout

2,3 (λ) + C3(t)− C3(λ)},

Rout
2,1 (t) = inf

0≤λ≤t
{min{Rout

3,2 (λ) + I2(λ), Rout
1,2 (λ)}+ C2(t)− C2(λ)},

where the resources available to v1, v2 and v3 are described by the service functions C1(t), C2(t) and C3(t),
respectively. The functionality corresponds to a simple processing chain with finite buffer sizes of 1 and 2, respec-
tively.

3 Resource Abstraction and System Equations

In order to arrive at efficient methods for the modular performance analysis of marked graphs, we will need to
introduce several abstractions. Instead of calculating the resulting arrival functions for a single service function
Ci(t) in time domain, we will use upper and lower bounds on Ci(t). This will enable us to consider a wide class of
processes and process characteristics as well as to derive computationally feasible analysis methods that provide
statements about the behavior of a system under a whole set of resource behaviors. This first step introduces
non-determinism as the service function is not provided explicitly anymore, but only bounds on it.

3.1 Service Curves and GPC Abstractions

Following the ideas of network calculus [8, 15], we define upper and lower bounds on service functions, denoted
as service curves. This way, we abstract from the concrete time domain and operate in the time interval domain.

Definition 3.1. Upper and lower service curves, βu and βl, map positive time intervals ∆ ∈ R≥0 to the maximal
and minimal amount of available resources in any time interval of length ∆. They satisfy βu(0) = βl(0) = 0 and

βl(∆) ≤ C(t + ∆)− C(t) ≤ βu(∆) ∀t ≥ 0, ∆ > 0.

Example 3.2. Figure 4 shows three examples of service curves that model (a) a fully available resource that leads
to a delay of τ for each unit of input token, (b) a TDMA resource that is available only in periodically repeating
time slots and (c) a service curve that models a locally synchronous behavior with cycle time τ , i.e. every τ an
input token unit can be processed.

Now, we can upper and lower bound the mapping of a GPC as given in (2) by

Rout(t) ≤ inf
0≤λ≤t

{Rin(λ) + βu(t− λ)},

Rout(t) ≥ inf
0≤λ≤t

{Rin(λ) + βl(t− λ)}.

Using the Min-plus algebra convolution operator

(a⊗ b)(∆) = inf
0≤λ≤∆

{a(λ) + b(∆− λ)}, (7)
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a) b) c)

Figure 4: Three examples of service curves.

we obtain a more concise notation, see also [6, 8, 15]:

Rin ⊗ βl ≤ Rout ≤ Rin ⊗ βu. (8)

In other words, for a single GPC component we can bound the number of token that arrive in [0, t) by abstracting
the available service using βu and βl. The next step is to apply this abstraction to the whole marked graph. As we
will see, we then get upper and lower bounds on the number of token that arrive in any channel in the graph.

3.2 Bounds for the Marked Graph and System Equations

So far, the (concrete) execution semantics of a marked graph has been described by the single equation (6).
Now, we will investigate the influence of the resource abstraction introduced in (8).

The approach is based on replacing the mapping Π of the whole marked graph by ’larger’ and ’smaller’ map-
pings Π. Then the resulting arrival functions R provide upper and lower bounds on the system behavior, respec-
tively. We say that a mapping Πu is larger or equal than a mapping Π if the relation holds pointwise or more
generally:

Πu ≥ Π ⇔ Πu ◦R ≥ Π ◦R ∀R,

Πl ≤ Π ⇔ Πl ◦R ≤ Π ◦R ∀R.

This leads us to the following result:

Theorem 3.3. LetR be a complete lattice. Let be given a monotone mapping Π with a unique fixed-point R ∈ R.
Define Rl and Ru to be the greatest and least fixed-point of Rl = Πl ◦Rl and Ru = Πu ◦Ru, respectively. Then

Rl ≤ R ≤ Ru.

Proof. Under the assumptions of the theorem, we find that the smallest fixed-points of R = Π ◦ R and Ru =
Πu ◦ Ru satisfy R ≤ Ru, see [9], page 199. As we have R ≥ R for all R that satisfy R = Π ◦ R, we find
R ≥ R ≤ Ru. As the fixed-point of Π is unique, we finally get R = R ≤ Ru. The proof for Rl is similar.

As a result of the theorem one can directly show that Rl ≤ R ≤ Ru holds for any fixed-point of Rl = Πl ◦ Rl

and Ru = Πu ◦Ru.
In other words, if we replace the mapping of the dataflow graph by one that is either not smaller or not larger,

then we get upper or lower bounds on the arrival functions, i.e. on the number of token that passed through the
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processing elements at each moment in time. This result will now be used in order to replace the service functions
C(t) by their abstractions, the service curves βu(∆) and βl(∆).

To this end, we will determine the above mappings Πu and Πl explicitly from the given marked graph structure.
As a result, we obtain abstract system equations whose solutions yield upper and lower bounds on the behavior of
any marked graph.

Starting point is again the modeling of each process of a marked graph by a Greedy Marked Graph Process, see
also (1), (2), (8) and Figure 3.

marked graph node abstract greedy process

Figure 5: Marked graph node with mji, mki initial tokens on edges eji, eki and its abstract representation.

Using the notation introduced so far and the minimum-operator ∧ with a ∧ b = min{a, b}, we obtain for the
simple two input-case as depicted in Figure 5

Ri = [(Rj + Imji) ∧ (Rk + Imki)]⊗ βi, (9)

where βi can be replaced by βu
i and βl

i in order to obtain the equations for the upper and lower bounds Ru
i and Rl

i,
respectively, where Ru

i ≥ Ri ≥ Rl
i. Using elementary calculus, we can reformulate the above equation to

Ri = [(Rj + Imji)⊗ βi] ∧ [(Rk + Imki)⊗ βi],

and finally,

Ri = βi ∧ [Rj ⊗ (βi + mji)] ∧ [Rk ⊗ (βi + mki)].

For the first main result of this paper, we will make use of the matrix notation S = (Sij) (S contains elements
Sij), the vector notations R = (Ri) and β = (βi) as well as the the matrix product C = A ⊗ B with cij =∧

(k)(aik ⊗ bkj). Note again the definition of ⊗ in (7) and a ∧ b = min{a, b}.

Theorem 3.4. Given a marked graph (V, E, M) and service curves βu, βl associated to its nodes that describe
bounds on the corresponding available resources, see Definition 3.1. Define the upper and lower system matrices
of the graph as Su,l = (Su,l

ij ) with

Su,l
ij =

{
βu,l

i + mji eji ∈ E
∞ eji 6∈ E

(10)

Then we can write the system equations for the marked graph as

Ru = βu ∧ Su ⊗Ru, (11)

Rl = βl ∧ Sl ⊗Rl, (12)

where Ru and Rl denote upper and lower bounds on any vector of execution traces of the marked graph with

Ru ≥ R ≥ Rl. (13)
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3.3 Solving the System Equation

Finally, we need to determine solutions to (11) and (12) in order to determine bounds on the event sequences
between the processes, i.e. tight bounds on the vector of arrival functions R in (13).

To this end, we make use of the corresponding results for distributive dioids as described in [1], page 193. All
solutions to (11, 12) can be determined as

R = y ∧ S∗ ⊗ β ∀y : y = S ⊗ y, (14)

where for simplicity we omit the superscripts u or l that relate to (11) or (12), respectively. The matrix S∗ denotes
the min-closure of S which is defined as

S∗ =
∞∧

k=0

S(k), (15)

where S(k) = S ⊗ S(k−1) for k ≥ 1 and

S(0) =




I∞ ∞ · · ·
∞ I∞ · · ·
· · · · · · . . .




Investigating the structure of the S∗ more closely yields the following interpretation: An element S∗ji of S∗ is the
minimal ’path length’ of all (including cyclic) paths from node i to node j in the marked graph. The ’path length’
is defined as the sum of all tokens along the path plus the convolution of all service curves on the path, except that
of node i. If i = j, then the value of S∗ii(0) is set to 0. We will come back to the structure of S∗ in more detail in
Section 3.4.

In order to determine as tight bounds as possible, we should find now the least fixed-point of Ru = βu∧Su⊗Ru

and the greatest fixed-point of Rl = βl ∧ Sl ⊗Rl.
The greatest solution to Rl = βl ∧ Sl ⊗ Rl is simply obtained as Rl = (Sl)∗ ⊗ βl, see [1], page 192. In order

to determine the least solution to Ru = βu ∧ Su ⊗ Ru, we need to determine the least y with y = Su ⊗ y, i.e.
y = inf{y : y = Su ⊗ y}.

The least fixed-point of y = Su ⊗ y with y = inf{y : y = Su ⊗ y} is given by y = limk→∞((Su)(k) ⊗ ⊥)
where⊥(t) = 0 for all t ≥ 0. This result can easily be shown using elementary techniques from lattice theory, see
[9], and by noting that Su is monotone. This is the result of the following theorem.

Theorem 3.5. The least fixed-point of y = S ⊗ y with y = inf{y : y = S ⊗ y} is given by

y = lim
k→∞

(S(k) ⊗⊥).

Proof. Let us consider the sequence y0 = ⊥, y1 = S ⊗ ⊥, y2 = S(2) ⊗ ⊥, ... . Then we can easily see that it is
increasing as y1 = S ⊗ ⊥ ≥ ⊥ = y0 and yk = S ⊗ yk−1 ≥ S ⊗ yk−2 = yk−1 if yk−1 ≥ yk−2. Here we use the
fact that S is monotone. Therefore, we have y0 ≤ y1 ≤ y2 ≤ .... As a result, the limit y′ = supk→∞(S(k) ⊗ ⊥)
exists.

Now, we will show that y ≥ yk for all k ≥ 0, i.e. the least fixed-point is lower bounded by yk. Of course, we
have y ≥ y0 = ⊥. Therefore, we also find y = S⊗y ≥ S⊗y0 = y1 and in general y = S(k)⊗y ≥ S(k)⊗y0 = yk.
Again, we make use of the monotonicity of S. As a result we have y ≥ y′.

Finally, we note that y′ = limk→∞(S(k)⊗⊥) actually is a fixed-point, i.e. y′ = S⊗y′ and therefore, y = y′.
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We can now show that for all meaningful marked graphs, we can simplify the calculation of the least fixed point
and therefore, Ru. The proof uses some interpretation of (Su)(k) which will be given in the next section.

Given a marked graph where the sum of initial token in each directed cycle of the network is strictly larger than
0. Then y = limk→∞((Su)(k)⊗⊥) = >, where we have⊥(t) = 0 and>(t) = ∞ for all t ≥ 0. More specifically,
we have the following theorem.

Theorem 3.6. Given a dataflow graph which models a marked graph. Suppose that the sum of initial token in
each directed cycle of the network is strictly larger than 0. Then y = limk→∞((Su)(k) ⊗⊥) = > and therefore,

Ru = (Su)∗ ⊗ βu. (16)

Proof. If we show that y = limk→∞((Su)(k) ⊗ ⊥) = >, then the theorem follows from (14). To this end, we

proof that all elements (Su)(k)
ji of (Su)(k) will approach∞ for k →∞. Let us distinguish between two situations.

At first, there is no path containing a directed cycle in the dataflow graph between a pair of nodes i and j. Based on
the result (19), we find (Su)(k)

ji = ∞ for all k > |V | where |V | denotes the number of nodes of the dataflow graph.
Now, let us suppose that there is a path from i to j that contains a cycle. If k > |V | ·K, then any path of length
k contains at least K cycles. Moreover, let δ denote the minimal sum of initial token in any cycle of the dataflow
graph. Then we find using (19) that (Su)(k)

ji ≥ Kδ for k > |V | ·K. As δ > 0, we find limk→∞(Su)(k)
ji = ∞.

Note that the result also shows that the fixed points of the system equations (11) and (12) are unique for both
cases, S = Su and S = Sl, respectively, see also [6].

The main results of this section can be summarized in the following theorem.

Theorem 3.7. Given a marked graph (V, E, M) and service curves βu, βl associated to its nodes. Suppose that
the sum of initial token in each directed cycle of the network is strictly larger than 0. Then we can determine tight
upper and lower bounds on any vector of execution traces of the marked graph Ru ≥ R ≥ Rl with the arrival
functions

Rl = (Sl)∗ ⊗ βl, (17)

Ru = (Su)∗ ⊗ βu, (18)

where we use Su and Sl from Theorem 3.4, and the corresponding closures (Su)∗ and (Sl)∗ from (15).

3.4 Interpretations

In this section, we will interpret the above equations (17) and (18) in terms of properties of the underlying
marked graph, e.g. paths, initial tokens and service curves associated to the elementary processes.

Obviously, the matrix S(n) =
⊗

0≤k≤n S plays a central role in the solution to the system equation for a marked
graph. As will be shown, there is a close relation to results in max-plus algebra, see [1], page 110.

As has been defined already in (10), the elements of the system matrix S are given as Sij = mji + βi if edge
(j, i) exists in the marked graph. Using this definition, one can now determine the elements of S(n) which are
denoted as S

(n)
ij . Here, we use the following notation:

• A path p in the marked graph is a set of connected edges, i.e. p = {(i0, i1), (i1, i2), ..., (in−1, in)}.

• The length n of a path is defined as n = |p|.
• The set of nodes of a path is defined as V (p) = {i0, ..., in}.

12



• The set of all paths of length n from node i to node j is denoted as Pn(i, j) = {p : (|p| = n) ∧ (i =
i0) ∧ (j = in)}.

• The set of all paths from i to j is denoted as P (i, j).

Based on the definition of S and S(n) =
⊗

1≤k≤n S we find

S
(n)
ij =

∧

p∈P n(j,i)


 ∑

(r,s)∈p

mrs +
⊗

(r,s)∈p

βs


 , (19)

for n > 0. If there exists no path of length n from j to i, then S
(n)
ij = ∞. The matrix S+ is defined as

S+ =
∞∧

k=1

S(k).

Using the definition of S, we find

S+
ij =

∧

p∈P (j,i)


 ∑

(r,s)∈p

mrs +
⊗

(r,s)∈p

βs


 , (20)

if there exists a path from j to i, and S+
ij = ∞ otherwise. Note that the min-closure S∗ can simply be determined

as S∗ = S(0) ⊗ S+ (or S∗ij = S+
ij if i 6= j and S∗ii = min{I∞, S+

ii }).
Now, we can more explicitly determine the resulting upper and lower arrival functions in the dataflow graph as

stated in (17) and (18). Using elementary arithmetic, we obtain

Ri = βi ∧
∧

p∈P (j,i)


 ∑

(r,s)∈p

mrs +
⊗

k∈V (p)

βk


 , (21)

where the equation holds for the upper and for the lower bounds, i.e. by adding the superscript u or l to R and
β. As an interpretation one can say that Ri is the minimal function that is larger than βi and larger than the ’path
length’ of any path in the marked graph that ends at node i. Here, the ’path length’ is determined as the sum of
all initial tokens on the path plus the convolutions of all service functions on the path, including that of the path
origin.

Example 3.8. It is useful to derive explicit formulas for special forms of service curves. The linear approximations
used here are common in the analysis of networked systems, see e.g. [15]. Therefore, let us consider the special
case of βi as depicted in Figure 6, where βl is a rate-latency function defined as

βl(∆) = max{0, σl · (∆− τ)},
and βu is a peak rate function defined as

βu(∆) = σu ·∆.

As a shorthand notation for the above, we can also write βl = (τ, σl) and βu = (σu).
From the definition of the convolution operator we can conclude that

⊗

i∈I

βl
i = (

∑

i∈I

τi,
∧

i∈I

σl
i),
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Figure 6: A simple set of service curves.

where I is a multiset of node indices i ∈ V . One should note that the indices i are not necessarily disjoint, i.e. the
result changes if a service curve appears several times in the convolution.

For the upper service curve, the situation is even simpler. Here, we obtain
⊗

i∈I

βu
i = (

∧

i∈I

σu
i ).

Now, we can make the explicit formula (21) more concrete by just replacing the convolution of the service curves
by the above expressions

Rl
i = (τi, σ

l
i) ∧

∧

p∈P (j,i)


 ∑

(r,s)∈p

mrs + (
∑

k∈V (p)

τk,
∧

k∈V (p)

σl
k)


 ,

Ru
i = (σu

i ) ∧
∧

p∈P (j,i)


 ∑

(r,s)∈p

mrs + (
∧

k∈V (p)

σu
k )


 .

3.5 Marked Graphs with Inputs

So far, we have been dealing with marked graphs that are autonomous, i.e. they do not have any stream of input
token from the environment. Token sources can enter the AND elements like any other channel, see Figure 5.
Therefore, we can start from the elementary system equation (9) and integrate system inputs. Let us define the
system input matrix G with elements (Gij), where Gii = Gi(t) if there is input at node vi with arrival function
Gi(t), otherwise Gii = Gi(t) = ∞ for all t if there is no input at node vi, and all other non-diagonal matrix
elements are set to 0, e.g. see Figure 7. Then we obtain

Ri = [(Rj + Imji) ∧ (Rk + Imki) ∧Gi]⊗ βi.

Using this information in the fixed-point equation discussed in the previous section, we replace (17, 18) in Theorem
3.7 with

Rl = (Sl)∗ ⊗G⊗ βl, (22)

Ru = (Su)∗ ⊗G⊗ βu. (23)

3.6 Transfer Functions of Marked Graphs

As a last preparatory step for embedding marked graphs into any compositional performance analysis frame-
work, we need to determine the transfer functions of a marked graph: How does a single input stream Gs at source
node vs influence an internal stream Rd at some destination node vd?
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service curves input arrival

Figure 7: Marked graph with input arrival functions G, service curves βu, βl associated to its nodes and the
resulting traces characterized by arrival functions R and their bounds Ru, Rl.

Since this information is already contained in (22) and (23), we only have to rewrite the equations such that
we (a) only evaluate the destination arrival function Ru,l

d and (b) have only one explicit input, namely Gs at the
source node vs. In order to simplify the notation, we suppose that the graph has only a single input at node vs, an
extension to the general case is straightforward. As a result of the whole exercise we find

Rl
d = (βl

sd ⊗Gs) ∧ hl
sd, (24)

where βl
sd = (Sl)∗ds ⊗ βl

s and hl
sd =

∧
j 6=s((S

l)∗dj ⊗ βl
j), and similarly

Ru
d = (βu

sd ⊗Gs) ∧ hu
sd, (25)

where βu
sd = (Su)∗ds ⊗ βu

s and hu
sd =

∧
j 6=s((S

u)∗dj ⊗ βu
j ).

Here, we note that βu,l
sd denote the cumulative service curves for the path from source node vs to destination

vd and hu,l
sd denotes an ’offset’ term. It is a function that is independent from the input arrival, i.e. it represents

the constant part in the transfer function which is the response of the marked graph if the input stream does not
contain any token. Note also, that (24) and (25) are scalar functions and not matrices or vectors anymore. Figure 8
visualizes the concept of a transfer function for a path in a marked graph.

input

outputtransfer function

Figure 8: Visualization of transfer functions.

4 Performance Analysis

In this section, we will do the last abstraction on marked graphs. After replacing the service functions Ci(t) that
represent the availability of a resource for executing node vi in the time domain by their corresponding service
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curves βu
i (∆) and βl

i(∆) in the time interval domain, we now do the same for the arrival functions Ri(t) and
Gi(t). This last abstraction is necessary for several reasons.

The whole analysis will be done now in the time interval domain. This way, we can embed the analysis not
only in the Modular Performance Analysis framework, see for example [28], but also relate it to classical real-time
analysis that expects stream characterizations like periodicity, jitter and burst size.

We will be able to determine performance bounds on end-to-end delays, necessary buffer spaces and the re-
maining service, i.e. after a given resource has been used for executing a certain marked graph node. The last
one enables composability in terms of resources which makes possible the analysis of various resource sharing
strategies such as fixed priority and TDMA.

4.1 Arrival Curves

In contrast to arrival functions R(t) that count the number of token that occurred in [0, t), arrival curves deter-
mine upper and lower bounds on the number of tokens in any time interval ∆, for examples see Figure 9.

a) b)

Figure 9: Arrival curves of periodic stream (a) and periodic stream with jitter and limited burst (b).

Definition 4.1. Upper and lower arrival curves αu, αl map positive time intervals ∆ ∈ R≥0 to the maximal and
minimal amount of token in any time interval of length ∆. They satisfy αu(0) = αl(0) = 0 and

αl(∆) ≤ R(t + ∆)−R(t) ≤ αu(∆) ∀t ≥ 0,∆ > 0.

In order to simplify the following discussions, we will use the notation of the Min-plus deconvolution operator
defined as

(a® b)(∆) = sup
λ≥0

{a(∆ + λ)− b(λ)}, (26)

and the Max-plus deconvolution operator defined as

(a®b)(∆) = inf
λ≥0

{a(∆ + λ)− b(λ)}.

Now we can make use of Definition 4.1 and obtain the tightest arrival curves (i.e. the least upper and greatest
lower curves) of some internal stream R(t) and some input stream G(t). Here, we use α and γ to denote arrival
curves related to internal streams (arrival functions R) and external input streams (arrival functions G):

αu = R®R, αl = R®R, (27)

γu = G®G, γl = G®G. (28)
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4.2 Bounds on Buffer Size and End-to-End Delay

Let us now determine an upper bound Bsd on the difference between the number of token that arrived at the
input to some source node vs and left at some destination node vd at any time. For example, if we set vs = vd, then
Bss is an upper bound on the number of token that are stored in front of the marked graph, i.e. at its input queue.
In other words, one can then guarantee that an input queue of size Bss would be sufficient to store all necessary
token.

The above definition of Bsd directly yields

Gs(t)−Rd(t) ≤ Gs(t)− ((βl
sd ⊗Gs) ∧ hl

sd)(t) ≤ Bsd.

Using the transfer functions from (24) and (25), the arrival curve corresponding to the input in (28) and the
definition of the convolution operator in (7), we obtain

Gs(t)− ((βl
sd ⊗Gs) ∧ hl

sd)(t) =

=Gs(t) + max{−hl
sd(t), sup

0≤λ≤t
(−Gs(t− λ)− βl

sd(λ))}

≤max{γu
s (t)− hl

sd(t), sup
0≤λ≤t

(γu(λ)− βl
sd(λ))}.

As a result, we find

Bsd ≤ max

{
sup
λ≥0

{γu
s (λ)− hl

sd(λ)}, sup
λ≥0

{γu
s (λ)− βl

sd(λ)}
}

. (29)

In other words, the maximal backlog as defined above can be determined as the maximum of the maximal vertical
distances between the functions γu

s (the upper arrival curve corresponding to the input stream) and hl
sd as well as

between γu
s and βl

sd.
A more detailed interpretation of B yields the following statement: Let us suppose that some path from s to d

has an initial sum of tokens Msd, then on this path, there will never be more than Msd + B token. This statement
is based on the fact that a firing of a node other than d does not change the number of token on any path from the
input of s (i.e. including the input buffer of s) to d . Therefore, the only possibility to change the number of token
on a path (including the input buffer) is to change G(s) or Rd, and their difference is bounded by B.

a) b)

Figure 10: Visualization of delay (a) and backlog (b) bounds in a marked graph.

Let us now determine a bound Dsd on the end-to-end delay of token, i.e. the maximal time a token needs from
a system input at the source node vs to the output of a destination node vd. In order to faithfully determine such a
bound on the end-to-end delay we suppose that the system does not produce an output if the input stream is empty,
i.e. Gs(t) = 0. Therefore, we request that βl

sd(0) = 0.
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In order to simplify the notation let us first define the maximal horizontal distance of two functions A and B as

h(A,B) = inf{τ ≥ 0 : B(t + τ) ≥ A(t) ∀t ≥ 0}.

Then an upper bound on the end-to-end delay of any token between an input Gs at source node vs to a destination
node vd is given by

Dsd = h(Gs, Rd) = inf{τ ≥ 0 : Rd(t + τ) ≥ Gs(t) ∀t ≥ 0}.
Using similar arguments as in the case of the necessary buffer space, we obtain that

Gs(t)−Rd(t + τ) =

=max{Gs(t)− hl
sd(t + τ),

sup
0≤λ≤t+τ

(Gs(t)−Gs(λ)− βl
sd(t + τ − λ))}

≤max{0, γu
s (t)− hl

sd(t + τ),

sup
0≤λ≤t

(γu
s (t− λ)− βl

sd(t− λ + τ))}

≤max{0, sup
λ≥0

{γu
s (λ)− hl

sd(λ + τ)},

sup
λ≥0

(γu
s (λ)− βl

sd(λ + τ))}.

As a result we get
Dsd ≤ max{h(γu

s , βl
sd), h(γu

s , hl
sd)}. (30)

In other words, the maximal delay as defined above can be determined as the maximum of the maximal hori-
zontal distances between the functions γu

s and hl
sd as well as between γu

s and βl
sd. The interpretation of the delay

and buffer bounds in marked graphs is visualized in Figure 10.

4.3 Output Arrival Curves

In this section, we will describe a method that allows to compute bounds on the token streams at any node in a
given marked graph. In comparison to the results in Theorem 3.7, these bounds are now given in terms of arrival
curves, i.e. not in the time domain but in the time interval domain as can be seen when comparing Figure 8 and
Figure 11. Again, this is necessary to abstract from the concrete time domain and leads to composability in terms
of resources and event streams.

input curve

output curve
transfer function

Figure 11: Transfer functions in time interval domain.

The derivation starts from the transfer functions developed in (24) and (25). In order to apply the relations
known from real-time calculus, see [26], we first approximate the transfer functions from input vs to node vd as
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follows:

Rl
d =(βl

sd ⊗Gs) ∧ hl
sd ≥ (βl

sd ⊗Gs) ∧ (hl
sd ⊗Gs) ≥ (βl

sd ∧ hl
sd)⊗Gs,

Ru
d =(βu

sd ⊗Gs) ∧ hu
sd ≤ βu

sd ⊗Gs.

As a result, we find that upper and lower bounds on the output stream at node vd in the time domain Ru,l
d can

be determined by convolving the input stream function Gs with a certain service curve. This fact enables to
directly use the results shown in [26] to compute the corresponding output arrival curves. Therefore, we obtain
the following theorem:

Theorem 4.2. Given a marked graph (V,E, M) and service curves βu, βl associated to its nodes according to
Theorem 3.7. Suppose that the network has a single input stream at node vs with arrival curves γu

s , γl
s. Then we

can determine upper and lower arrival curves αu
s , αl

s associated to any node vd with

αu
d =

(
(γu

s ⊗ βu
sd)® (βl

sd ∧ hl
sd)

)
∧ βu

sd, (31)

αl
d =γl

s ⊗ (βl
sd ∧ hl

sd). (32)

where we use βl
sd and βu

sd as defined for (24) and (25), respectively.

4.4 Remaining Service

In order to enable compositionality, we need to determine the remaining service curve β′ld , β′ud at any node vd,
see also Figure 5. This enables us to use the remaining service as an input to some other process and thereby,
represent fixed-priority scheduling where the first process, i.e. the one that gets the initial service βl

d, β
u
d from the

provided resource, has a higher priority in comparison to the process that just gets the remaining service β′ld , β′ud .
To this end, we start from the balancing equation of a greedy process component according to Definition 2.7,

i.e. the remaining service equals the available service reduced by the produced output, C ′
d(t) = Cd(t) − R′

d(t).
Therefore, we obtain

C ′
d(t + ∆)− C ′

d(t) = [Cd(t + ∆)− Cd(t)]− [R′
d(t + ∆)−R′

d(t)],

which is bounded by

β′ld (∆) ≥ βl
d(∆)− αu

d(∆), β′ud (∆) ≤ βu
d (∆)− αl

d(∆).

Using the fact that the remaining service curves are monotone functions, we can tighten the bounds as follows:

β′ld (∆) = sup
0≤λ≤∆

{βl
d(λ)− αu

d(λ)}, (33)

β′ud (∆) = ( inf
∆≤λ

{βu
d (λ)− αl

d(λ)})≥0. (34)

In the last two subsections, we have determined the output arrival curves at any process and the corresponding
remaining services curves of any process in a marked graph. These representations can then be used in order
to compose the marked graph model with other parts of the application. For example, the output of a marked
graph characterized by its arrival curve can be linked to the input of some other application. One can also link the
remaining service to another performance model and analyze a fixed priority setting this way, see also [5, 28].
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5 Experimental Results

5.1 Comparison

In this section we compare the performance analysis results computed with the method proposed in this paper
with results computed with the methods proposed in [3] and [4]. These two methods are very similar in their
approach and therefore we have implemented only the more recent one described in [4]. For simplicity in this
section, we will refer to our method as MG (for marked graph) and the method proposed in [4] as FB (for finite
buffer).

System: The system used for evaluation is shown in Figure 12a. It is a simple chain of three tasks T1, T2, T3
which processes a bursty input event stream characterized with period 4 ms, jitter 20 ms, and minimum interarrival
distance between two events 1 ms. All tasks have constant execution time of 1 ms. They are mapped on an MpSoC
with three processing elements PE1, PE2, PE3. PE1 exhibits complex behavior due to being shared with other
tasks, it may not be available to task T1 for 2 ms, then it may provide service of maximum 20 events/ms which
eventually slows down to a long term rate of 1 event/ms. Similarly, PE2 may not be available for 2 ms, has a
maximum speed of 2 events/ms, and a long term rate of 1 event/ms. PE3 may not be available for 1 ms, and
has a constant rate of 0.5 events/ms. For simplicity, the communication hardware is not shown here and it is not
modeled.

Each task is activated by events that arrive in a FIFO buffer mapped to the same processing element as the
task. Tasks T1 and T2 have buffers with unlimited capacity. Task T3 has a buffer with a finite size B = 1. The
semantics of the buffer are blocking-write which means that task T2 needs to block if the buffer at T3 is full.
When T2 blocks, the service provided by PE2 is available to be used by other lower priority tasks mapped on
PE2.

Model: The system is modeled with a simple marked graph that has a single cycle with one initial token, see
Figure 12b. The abstract model of greedy marked graph processes that is used for performance evaluation of the
system with method MG is shown in Figure 12c.

Scenario: We compare methods MG and FB in terms of tightness of the computed performance metrics for
the system in Figure 12a. More specifically, we compare the bounds on the output of task T2: αu

2 , αl
2 computed

with the two methods, and the bounds on the remaining service of task T2: β′u2 , β′l2 again for both methods. The
parameters of interest are indicated with a question mark ’?’ in Figure 12c. We have chosen these parameters
because they are essential for computing bounds on other performance metrics such as end-to-end delays and
buffer sizes. Any inaccuracy in computing the chosen parameters will have an influence on all other computed
metrics for the system.

Results: Bounds for the output event stream of T2 computed with methods FB and MG are shown in Figure 13a.
Note, that method FB does not compute the lower bound αl

2. For the upper bound αu
2 , method MG is more tight

and it accurately shows the fact that there cannot be a burst of events coming out of task T2 since the buffer of T3
is of finite size. Even for the long term rate, method FB shows some error.

Bounds for the remaining service of T2 are shown in Figure 13b. Note, that method FB does not compute an
upper bound on the service β′u2 . For the lower bound β′l2 , method MG is again tighter. This is due to the fact that
method FB computes a pessimistic bound on the event output of the task which is then used for computation of
the remaining service.

The tightness of the results computed with method MG can be observed even for simple systems such as the
one used here. We expect that the difference in results will be more visible for more complex systems. MG is a
more general method than method FB since it can analyze not only systems with finite buffers but any system that
can be modeled with a marked graph. And more importantly, this gain in generality does not lead to pessimism in
the computed results.
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Figure 12: A system with a single finite buffer (a), with its marked graph model (b), and the abstract greedy
marked graph processes model (c).

5.2 Validation

In this section, we validate our approach with a more complex scenario and compare the analysis results to
simulation measurements.

System and models: We use an application from the area of software defined radio. It is adapted from [19].
The Wireless LAN (WLAN) and TD-SCDMA applications run simultaneously. Both of them are modeled as
marked graphs as depicted in Figure 14. In contrast to [19], we will use an idealized scenario. The underlying
multiprocessor architecture consists of 5 independent cores where communication time is supposed to be negligi-
ble.

It is assumed, that processor 5 provides a TDMA schedule which partitions the period into two equal time slices,
named 5.1 and 5.2. Processors 1-4 have speeds of 100M cycles/sec, processor 5 provides 200M cycles/sec. The
following Table 1 lists the mapping of the nodes to the processors and the number of cycles each of the nodes in
[19] needs on the respective processor. The TDMA-scheduler in processor 5 is assumed to have a period of 0.2 ms
and the slot lengths for 5.1 and 5.2 are equal, i.e. 0.1 ms. We further assume, that the inputs to the two applications
are periodic with periods equal to 0.2 ms and 0.7 ms, for the WLAN and TD-SDMA applications, respectively.

Let us suppose that we use fixed priority scheduling where all nodes of the WLAN application have higher
priority than those of the TD-SCDMA marked graph.

Experimental setup: Simulation models of the two applications have been implemented in the Real-Time
Simulation (RTS) Toolbox (www.mpa.ethz.ch). It is a framework for discrete-event simulation which uses the
component structure of MPA [5, 28] however, instead of using abstracted event and resource models, it uses
traces which are produced randomly following the specifications of the processing cores and the input streams.
The processes are simulated assuming their worst-case execution demands. The analysis computations have been
performed with the RTC (Real-Time Calculus) Toolbox (www.mpa.ethz.ch).

Scenario: We compare results from analysis computed with inequality (30) and simulation for the maximum
token delays from the input node to the outputs of all nodes in the graph for both applications. The simulation
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Figure 13: Comparison of methods FB and MG for the output event stream (a), and the remaining service (b).
Note, that method FB does not compute lower bounds on the output event streams, and upper bounds on the
remaining services.
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Figure 14: Marked graphs that model WLAN and TD-SCDMA applications.

has been performed with several traces and from all of them the maximum observed end-to-end delays have been
selected.

Results: The results are summarized in Table 2. They show the tightness of the analysis and the feasibility of
the method for the performance analysis of cyclic data flow graphs.

6 Concluding Remarks

The paper presents a new modular performance analysis framework for distributed implementations of cyclic
dataflow graphs, in particular marked graphs. It substantially generalizes previous analysis approaches in that
general non-deterministic resource interactions can be modeled by means of service curves. This way, it is possi-
ble to model implementations with finite buffer sizes, model dynamic scheduling where the processes of different
marked graphs are scheduled according to a fixed priority scheme and take into account other scheduling disci-
plines like TDMA. We plan to extend the approach towards more general dataflow models such as conflict-free
Petri Nets.
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Table 1: Mapping and cycles for each of the processes in Figure 14.

node 1 2 3 4 5 6
cycles 2k 0.31k 0.33k 0.42k 4k 2k

core 1 2 4 3 5.1 5.2
node 7 8 9 10 11 12

cycles 50k 12.5k 20k 3.3k 0.25k 50k
core 1 2 5.1 3 4 5.2

Table 2: Maximum end-to-end delays observed in simulation compared to analytical results.

output 1 2 3 4 5 6
simulation [ms] 0.02 0.023 0.026 0.031 0.12 0.11

analysis [ms] 0.02 0.023 0.027 0.031 0.151 0.13
output 7 8 9 10 11 12

simulation [ms] 0.56 0.688 1.025 0.721 0.691 1.28
analysis [ms] 0.56 0.688 1.048 0.726 0.692 1.316
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