
Executing Dataflow Actors as Kahn Processes

Andreas Tretter∗ Jani Boutellier‡ James Guthrie∗ Lars Schor∗ Lothar Thiele∗
∗Computer Engineering and Networks Laboratory

ETH Zurich, Zurich, Switzerland
firstname.lastname@tik.ee.ethz.ch

‡Department of Computer Science and Engineering
University of Oulu, Oulu, Finland

jani.boutellier@ee.oulu.fi

ABSTRACT
Programming models which specify an application as a network
of independent computational elements have emerged as a prom-
ising paradigm for programming streaming applications. The
antagonism between expressivity and analysability has led to
a number of different such programming models, which provide
different degrees of freedom to the programmer. One example
are Kahn process networks (KPNs), which, due to certain re-
strictions in communication, can guarantee determinacy (their
results are independent of timing by construction). On the
other hand, certain dataflow models, such as the CAL Actor
Language, allow non-determinacy and thus higher expressivity,
however at the price of static analysability and thus a potentially
less efficient implementation. In many cases, however, non-de-
terminacy is not required (or even not desired), and relying on
KPN for the implementation seems advantageous.
In this paper, we propose an algorithm for classifying data-

flow actors (i.e. computational elements) as KPN compatible
or potentially not. For KPN compatible dataflow actors, we
propose an automatic KPN translation method based on this
algorithm. In experiments, we show that more than 75% of all
mature actors of a standard multimedia benchmark suite can
be classified as KPN compatible and that their execution time
can be reduced by up to 1.97x using our proposed translation
technique. Finally, in a manual classification effort, we validate
these results and list different classes of KPN incompatibility.

Keywords
Dataflow programming, Kahn process networks, classification

1. INTRODUCTION
The critical importance of multi-processor technology in

future data-processing systems has led to parallel programming
models being extensively studied in the last two decades.
One promising paradigm that has emerged for programming
streaming and multimedia applications is to specify the
structure of applications as directed graphs, the functionality
of which is split into a set of independent computational
elements that can only communicate through point-to-point
first in, first out (FIFO) channels. This helps to avoid the
need for additional synchronisation as well as many pitfalls of
parallel execution such as data races. At the same time, this
paradigm explicitly exposes concurrency in the application,
thus considerably simplifying execution on a parallel system.
Two popular classes of programming models following this

paradigm are dataflow models [14] and Kahn process networks
(KPNs) [12]. A major difference between them lies in the way
they describe the computational elements, Kahn processes and
dataflow actors. While for Kahn processes, the only way of

obtaining input is to first choose a channel for reading from and
then to wait until data arrive, advanced dataflow actors may
base their reading behaviour on the availability of input data
on the channels and even on this data itself (peeking). As an
implementational example for this kind of dataflow networks,
we focus in this paper on the CAL actor language [9], of which a
subset named RVC-CAL [16] has been standardized by ISO/IEC
23001-4:2009 MPEG to specify multimedia applications. Clearly,
these possibilities allow for a higher expressiveness and flexibility.
On the other hand, if an actor’s behaviour depends on data
availability, it may also depend on timing. Consequently, an
actor classification into either static, dynamic or time-dependent
has been proposed [20, 22].
In contrast, KPNs are always determinate, i.e. the sequences

of tokens on the channels do not depend on timing. KPNs bring
the benefit of a more efficient low-level implementation, as a
Kahn process is at any moment either computing or waiting for
input from a specific channel. Its ready state can thus easily be
determined, whereas for a CAL actor, multiple rules and criteria
have to be evaluated first to achieve the same goal. This is one
of the reasons why the KPN model has been widely used in high-
level synthesis frameworks for parallel systems as, for instance,
MAPS [7] or DAL [18]. Since even in non-determinate dataflow
specifications, many actors are in fact determinate, it appears
favourable to analyse these actors for KPN compatibility in
order to exploit the related optimisation potential.
In this paper, we present a formal method for translating

KPN compatible dataflow actors to Kahn processes. To this end,
we first show that the aforementioned classification into static,
dynamic, and time-dependent actors is inadequate for evaluating
KPN compatibility. Afterwards, we propose an algorithm to clas-
sify a dataflow actor as KPN compatible or potentially KPN in-
compatible (it tries to identify sufficient conditions for KPN com-
patibility in a high number of real cases, the problem being unde-
cidable in general). Based on this algorithm, we then propose a
method to translate a KPN compatible dataflow actor to a Kahn
process. Finally, we implement the proposed method in the RVC-
CAL framework [21] and show that more than 75% of all mature
actors of the RVC-CAL application suite [1] can be proven to be
KPN compatible by our algorithm and that their performance
can be improved by up to 1.97x when executing them as Kahn
processes instead of dataflow actors. In a manual classification
effort, we analyse the KPN compatibility of all these actors and
list the different patterns and constellations leading to KPN
incompatibility or non-recognition of KPN compatibility.
The remainder of the paper is organized as follows. In Sec-

tion 2, an overview on the considered programming models is
given. In Section 3, we describe the proposed translation tech-
nique. Experimental results are presented in Section 4. Finally,
we review related work in Section 5.

978-1-4673-8079-9/15/$31.00 ©2015 IEEE 105

2. BACKGROUND
In this section, the dataflow and the Kahn process network

(KPN) programming models are introduced in detail. In both
of them, applications can be described as directed multi-graphs
in which the nodes are computational elements and the edges,
called channels, are unbounded FIFO buffers transporting so-
called tokens from the source node to the destination node
of the channel. The computational elements are independent
from each other and can only communicate via channels. In
KPNs these computational elements are called processes and in
dataflow models they are called actors. The difference between
dataflow graphs and KPNs is given by the different specification
of actors and processes, which we will concentrate on in the rest
of this work.
In the following, we will give a definition of a process accord-

ing to Kahn and of an actor in dataflow models. Based on that,
the considered problem of translating a dataflow actor into a
Kahn process will be defined.

2.1 Kahn Processes
The KPN programming model [12] has a very generic defini-

tion of processes, imposing only the two restrictions: Firstly, each
channel read access has to be blocking and destructive. Blocking
means that when a process tries to read from an empty channel,
it will wait (possibly for infinite time) until a token arrives on the
channel. Destructive means that upon reading a token, the token
is also removed from the channel. Secondly, the elementary
operations performed in a process must not yield unpredictable
results (e.g. access to timers or hardware random generators).
A Kahn process can be defined as follows:

Definition 1 A Kahn process π is a stateful, sequential pro-
gram which performs calculations, write accesses to the outgoing
channels and blocking, destructive read accesses to the incoming
channels in any arbitrary sequence.

Due to this well-defined communication interface, Kahn pro-
cesses are determinate in the sense that the sequences of tokens
on their channels are independent of timing [12, 15, 14]. De-
terminacy can be formalised using the following two definitions:

Definition 2 Let γ be a channel. For any execution of the
process network, the history of γ is the (possibly infinite) se-
quence of all tokens that traverse the channel, in the order in
which they are written.

Correspondingly, the input history of a process is the combin-
ation of the histories of all its incoming channels and its output
history that of its outgoing channels.

Definition 3 A process or an actor is determinate iff for any
given input history, it will always produce the same output
history.

2.2 Dataflow Actors
The behaviour of dataflow actors as defined in [14] is a repeti-

tion of so-called firings. In each firing, the actor will destructively
read a specific amount of tokens from the incoming channels,
perform computations and write a specific amount of tokens to
the outgoing channels. An actor can only fire if all the input
tokens are available on the channels.
The simplest form of dataflow is synchronous dataflow [13],

where actors are stateless and each firing reads and writes a
fixed number of tokens. Several extensions exist; in this work,
we will concentrate on a very generic extension in which an actor

Algorithm 1: Illustration of the behaviour of a dataflow actor α.
while true do

A∗α←{a∈Aα | a can be fired}
if A∗α 6={} then

a∗←argmax
a∈A∗α

qα(a)

fire a∗
end if

end while

may have a state and a set of different actions it can perform
as a firing.
In order to properly define input and output of an action, we

first introduce the notion of a token set. A token set contains
all tokens that are read or written by an action; they are
represented by their position immediately before or after firing,
e.g. the second token to be read from a specific input channel or
the fifth token to be written to a specific output channel during
the firing. As FIFO channels only allow in-order accesses, all
the token positions on a specific channel must form a sequence
without any gaps in it. Formally, we define a token set as follows.

Definition 4 Let Γ be a set of channels and ν :Γ→N0 a func-
tion assigning each channel γ∈Γ a number of tokens to be read
from or written to it. Then the token set ψ over Γ defined by
ν is a set of token positions ψ={(γ∈Γ,n∈N)|n≤ν(γ)}. Ψ(Γ)
is the set of all token sets over Γ.

To be able to formally describe functions using these tokens
as input or output, we introduce the notion of a value space:

Definition 5 The value space V (ψ) of a token set ψ is the
set of all possible combinations of values which the tokens rep-
resented in ψ can have.
Now, we formally define an actor as a stateful computational

element with a prioritised set of actions it can fire.

Definition 6 An actor is a tuple α=(Sα,Aα,qα,s0
α), with Sα

the set of possible states of the actor, Aα a set of actions for the
actor, qα :Aα→N a function assigning each action a priority
and s0

α∈Sα the initial state.

We consider the states of an actor to be an arbitrary com-
bination of variables of any kind. This means in particular that
the state set of an actor does not have to be finite.
We define an action as follows:

Definition 7 Let α be an actor with Iα the set of its incoming
andOα the set of its outgoing channels. An action for this actor
is a tuple a= (ra,wa,fa,ga) with ra ∈Ψ(Iα) and wa ∈Ψ(Oα)
the input and output token sets, fa :Sα×V (ra)→Sα×V (wa)
the fire function and ga :Sα×V (ra)→{true,false} the guard
function of the action.
The action a can be fired if:
1. all input tokens according to ra are available and
2. ga evaluates to true for the current state and the available

input tokens.
Upon firing, it will destructively read the input tokens (i.e. all

tokens in ra) from the channels, evaluate fa for the current state
and the tokens just read and use its return values for updating
the state of α and for writing tokens to the output channels
according to wa.
Now we can define the behaviour of an actor α as an infinite

repetition of the following operations: It will determine the set
A∗α⊆Aα of actions that can be fired. If this set is non-empty,

106

Listing 1: An absolute value actor written in CAL.
actor Abs () int In ==> int Out: //one channel in, one out

pos: //action: reads a token i from In and writes it to Out
action In :[i] ==> Out :[i]
guard i >= 0 //only fired if i is non-negative

end

neg: //action: reads a token i from In and writes -i to Out
action In :[i] ==> Out :[-i]
guard i < 0 //only fired if i is negative

end
end

Listing 2: A non-deterministic merge actor written in CAL.
actor NDMerge () //two channels in, one out

int InA , int InB ==> int Out:

actionA : //reads i from InA and writes it to Out
action InA :[i] ==> Out :[i]

end //no guard
actionB : //reads i from InB and writes it to Out

action InB :[i] ==> Out :[i]
end //no guard

end

the action a∈A∗α with the highest priority qα(a) will be fired.
If there are multiple actions with the same, highest priority that
can be fired, it is not defined which of those actions is fired. An
illustration of this behaviour is given in Algorithm 1.
In summary, for a dataflow actor, the action which is fired

(and thus the amount of tokens read and written) can depend
on the state of the actor, on the value of tokens in the incoming
channels and on the existence of tokens in the incoming channels.
A dataflow actor must therefore be able to non-destructively
read the tokens on its incoming channels (peeking). Furthermore,
since there can be situations when the action to be fired (and
thus possibly the output to be produced) depends on which
token arrives first, actors can be non-determinate.
Examples for a programming language that can be described

by the dataflow model given here are the CAL Actor Lan-
guage [9] and its standardised variant RVC-CAL[16] 1. List-
ings 1 and 2 show two code examples written in RVC-CAL. The
Abs actor in Listing 1 has two actions pos and neg. Both read
one token from the input channel In and write one token to
the output channel Out. The guard expressions i≥0 and i<0,
respectively, ensure that, depending on the value of the token
at the FIFO head of In, only one of both actions can fire. This
actor is determinate. For comparison, the two actions of the
NDMerge actor in Listing 2 have no guards specified, i.e. their
guard function always evaluates to true. Therefore, actionA
and actionB can fire whenever a token is available at InA and
InB, respectively, forwarding this token to Out.

2.3 Problem Statement
In the following, we will define the problem to be solved in

this work. To this end, we first define when an actor and a
process can be regarded as equivalent.

Definition 8 Let α be a dataflow actor according to Defini-
tion 6 and π be a Kahn process as specified in Definition 1.
α and π are functionally equivalent iff for any equal input
history, α and π always produce equal output histories.

1The model and (RVC-)CAL differ in that (RVC-)CAL does
not require the specification of priorities. Also, the latter are
specified as partial orders, i.e. one only defines e.g. q(a1)>q(a2).
The slightly simpler notation we chose does, however, cover all
the cases needed for this paper, since multiple actions can still
have the same priority number.

Listing 3: Example for a determinate, but not KPN compatible actor.
actor DeterminateNotKPN ()

int InA , int InB , int InC ==> int Out:

actionA : action InA :[a], InB :[b] ==> Out :[a]
guard a >0 && b >0 end

actionB : action InB :[b], InC :[c] ==> Out :[b]
guard b <=0 && c >0 end

actionC : action InA :[a], InC :[c] ==> Out :[c]
guard a <=0 && c <=0 end

actionX : action InA :[a], InB :[b], InC :[c] ==>
guard (a <=0 && b >0 && c >0) ||

(a >0 && b <=0 && c <=0) end

end

b≤0 b>0
a>0

a≤0
c>0 c≤0 c>0

ActionB
ActionX

ActionC

ActionA

ActionX

Figure 1: A Karnaugh map showing the actions to be fired for the
actor from Listing 3, depending on the input token combination.

The problem regarded in this work can now be formulated
as follows: Given a dataflow actor α. Is there a functionally
equivalent Kahn process π and, if so, how can it be constructed?

The following examples shall illustrate the complexity of the
problem. Of course, the actor in Listing 1 is KPN compatible
while the actor in Listing 2 is non-determinate and thus clearly
not KPN compatible. However, things are more complicated
for the actor shown in Listing 3. The Karnaugh map in Fig. 1
shows the different actions to be fired for each combination
(a, b, c) of the first tokens to be read from each of the input
channels (provided that they exist). Since none of the guards
overlap in the diagram, the action to be fired can be clearly
determined from the values of the tokens and does not depend
on priorities or the availability of tokens. The behaviour of the
actor is thus determinate. Although some actions can still be
fired if one of the channels is empty, this will only happen if the
respective action would also be fired if the channel was filled.
This feature, however, cannot be achieved with KPN: A Kahn

process would have to choose one channel to read from without
knowing about the availability of tokens. If, for instance, this
channel was InA, the process would block on an infinite sequence
of negative integers on InB and of positive integers on InC if
InA remained empty. This, however, is not the behaviour of
the given actor. In other words, this actor is determinate but
KPN incompatible. In this example, one can also graphically
interpret this constellation such that it is impossible to split
the Karnaugh map at the borders for a, b or c without cutting
through one of the action guards.
This example shows that the problem regarded in this work

is not the same as the problem of classifying an actor as time-
dependent or not, which was discussed, e.g., in [20].

3. TRANSLATING DATAFLOW ACTORS
TO KAHN PROCESSES

In this section, we discuss the translation of dataflow actors to
Kahn processes. While the two-step procedure we propose con-
sists of a KPN compatibility evaluation and a subsequent Kahn
process construction, our compatibility analysis method is con-
structive and thus works the other way round: We first construct
a Kahn process that imitates the dataflow actor’s behaviour. Af-

107

Algorithm 2: Template for a Kahn process translation π of a
dataflow actor α. The template uses initial state s0

π = s0
α and

an action set Aπ=Aα.
s←s0

π

while true do
// Find next action to be fired
a←SelectNextAction(s,Aπ)
// Fire the action
in=ReadInputTokens(ra)
(s,out)←fa(s,in)
WriteOutputTokens(wa,out)

end while

terwards, if we can show that this process is functionally equival-
ent to the actor, we have proved the actor’s KPN compatibility.
Obviously, this approach cannot detect all cases of KPN com-

patibility (that problem is undecidable [22]). However, we will
show in the next section, using a state-of-the-art dataflow bench-
mark suite with 381 actors, that the method works for a large
subset of KPN compatible dataflow actors in real applications.
The section continues by showing how to build the mentioned

Kahn process imitation of a given dataflow actor. We will give
criteria as to which requirements have to be met to guarantee
functional equivalence. Afterwards, we will show a formalisation
of this in which we statically analyse if these requirements are
met under all possible circumstances. That would be a sufficient
condition for KPN compatibility. Finally, we will discuss differ-
ent translation implementations and compare the efficiency of
the produced code.

3.1 Constructing a Kahn Process from a Data-
flow Actor

In the following, we propose a method to build a Kahn process
imitating the functionality of a given actor. The difficulty is that
in contrast to the dataflow actor, the constructed Kahn process
can only access the input channels using blocking, destructive
reads.
We propose to construct the process using the template shown

in Algorithm 2. The behaviour of the process can be described
as an endless loop, each iteration consisting of two operations:
Finding the next action to fire and actually firing it. As firing
a dataflow action can be done natively in a Kahn process, the
only difficulty lies in finding the correct action to fire, i.e. in
determining the function SelectNextAction. The following
theorem shows that functional equivalence between such a Kahn
process and a dataflow actor can be attained if for any input, the
sequence of actions fired by the process is same as with the actor.
Theorem 1 Let α be a dataflow actor and let π be a Kahn pro-
cess constructed according to the template given in Algorithm 2.
π is functionally equivalent to α if for any input history, π and
α always fire the same actions in the same order.
Proof From Definition 8, we know that π and α are function-
ally equivalent if both generate the same output history for any
given input history. According to the process template, output
is only produced when firing actions. Therefore, π and α are
functionally equivalent if they always fire the same actions on
the same input sequence. �

The challenge is now to be able at any moment to determ-
ine which action the actor will fire without knowing about the
availability of tokens or their content. In general, this is not
always possible for dataflow actors where, for instance, actions

can be fired or not depending on the availability of tokens or
their values. However, for a large group of actors, there are
possibilities of exploiting certain properties of the action guards.

• In general, guard functions do not depend on the full input
token set of the associated action. In particular, many
guard functions only depend on the state of the actor and
can thus be evaluated without reading any tokens.

• Actions may have common input tokens. The Abs actor
in Listing 1 shows a typical example of this setup: There
are two different actions, both with guards that peek an
input token. However, both of these guards peek the same
input token, and one of these two actions must fire next.
Consequently, the token will be read in any case and can
thus be prefetched. After reading it, the process can decide
which action to fire and pass the token on to it.

• Oftentimes, the return values of guards can be predicted
without knowing all of the required input tokens. If, for
instance, a guard function is a boolean and combination
of multiple terms, the result will always be false if only
one of these terms evaluates to false. In this case, the
input tokens for the other terms are not required to know
that the guard is not met.

These ideas can now be combined to an algorithm that de-
termines the action to be fired next, i.e. an implementation of
SelectNextAction in Algorithm 2. For this, we assume that
for each guard g, there is function predict〈g〉, which, provided
with the state of the actor and the values of the input tokens
prefetched so far, evaluates to true, false or unknown. The
following theorems shall provide a theoretical basis for the op-
eration of the SelectNextAction algorithm.
First, we show that if the guard of a given action within a

dataflow actor can be predicted to false, this action will not
be fired next, independently of any additional input tokens that
may arrive.

Theorem 2 Let α be an actor and a∈Aα be an action, with
predict〈ga〉 evaluating to false. Then a will not be the next
action fired by α.

Proof If predict〈ga〉 (and thus ga) evaluates to false, a can-
not be fired. The return value of ga depends on the state of the
actor and on certain input tokens. Both can only be changed
when firing an action. So another action has to be fired first
before ga can evaluate to true. �

Now we will analyse which tokens the constructed Kahn pro-
cess can prefetch at a given moment without losing functional
equivalence to the original dataflow actor. The difficulty here
is to avoid additional blocking which is not there in the original
actor. Such a blocking could be induced by a (blocking) read
operation in the Kahn process.

Theorem 3 Let α be an actor to be translated to a Kahn pro-
cess π. Let A⊆Aα be a set containing all actions the guards
of which are predicted to true or to unknown. Then π can
prefetch all tokens from the prefetch token set

⋂
a∈Ara of A

without losing the functional equivalence to α.

Proof According to Theorem 2, only elements of A are eligible
to be fired next. Each of these actions a∈A needs all tokens
out of its input token set ra before it can be fired. Therefore, α
will not fire any action until those tokens which are contained in
all of these input token sets have been fetched. A Kahn process

108

Table 1: Example actions of an example dataflow actor with the
state s∈N and the input channels X and Y . X[0] is the first token
the actor receives when reading from X, X[1] the second token etc.
The actions’ priorities increase with increasing numbers.
Action Input tokens Guard Priority
a1 — s=1 1
a2 X[0],X[1],Y [0] s=2∧X[1]>0∧Y [0]>0 2
a3 X[0] s=2∧X[0]=1 3
a4 X[0],X[1],Y [0] s=2∧X[0]=2∧X[1]·Y [0]≤0 4
a5 — s=3 5
a6 Y [0] s=3∧Y [0]<0 6

prefetching any token from the prefetch token set will thus never
be blocked for longer than α will. When in control again, it can
continue imitating α. �

With these prerequisites, we can now describe a possible im-
plementation of SelectNextAction for the imitation of an
actor α. The algorithm performs an iterative reduction of a set
A of actions and can be summarised by the following steps:

0. Start with A=Aα.

1. Prefetch all tokens from the prefetch token set of A.

2. If the guard of an action from A is predicted to false con-
sidering all prefetched tokens, remove the action from A.

3. Iterate steps 1 and 2 until convergence. (Since A can only
shrink, convergence is guaranteed.)

Once the iteration has converged, there are two possibilities: If
all input tokens of the action in A with the highest priority have
been prefetched, this action is to be fired next. Otherwise, the
next action to be fired cannot be determined using this method.
We will illustrate this algorithm for the example actor given

in Table 1. The actor has a rather simple state s∈N and two
input channels, X and Y . Each of the actions ax has a different
priority q(ax)=x (this is not necessarily the case in practice).
Assuming that s=2 and the input tokens on both X and Y are
1,2,3,4,5,..., the algorithm would behave as follows:

• Initialisation: A={a1,...,a6}. No tokens to prefetch. Since
s=2, a1, a5 and a6 can be eliminated (i.e. removed from
A).

• First iteration: A = {a2,a3,a4}. Prefetch X[0]. Since
X[0]=1, a4 can be eliminated.

• Second iteration: A={a2,a3}. No further tokens can be
prefetched. No further eliminations are possible.

In this case, the algorithm stops with A= {a2,a3}. Since all
input tokens of a3 have been prefetched and its guard evaluates
to true, a3 can be fired. a2 is also still a candidate but cannot
be fired yet because some of its input tokens are still missing.
Since, however, a3 has the higher priority and can be fired,
the actor will fire a3, independently of a2. Thus, in this case
the algorithm is able to determine a3 as the next action to be
fired. For other actor states or inputs, however, the situation
may be different. Clearly, the constructed Kahn process is only
functionally equivalent to the original actor if the next action
to fire can be determined for any actor state and input. This
is expressed in the following theorem.

Theorem 4 Let α be an actor to be translated to a Kahn process
π using the method described above. α and π are functionally

a A={a1,...,a6}
P={}

b A={a1}
P={}

s=1

c A={a2,a3,a4}
P={X[0]}

s=2

d A={a5,a6}
P={}

s=3

e A={a2,a3}
P={}

X[0]=1

f A={a2,a4}
P={X[1],Y[0]}

X[0]=2

g A={a2}
P={X[1],Y[0]}

X[0] 6∈{1,2}

h A={a2}
P={}

X[1]>0∧
Y[0]>0

i A={a4}
P={}

X[1]·Y[0]≤0

Figure 2: The peek sequence tree for the actor described in Table 1.
The action to be fired in each case is highlighted.

equivalent if the implementation of SelectNextAction is
able to determine the next action to fire for any state of the
actor and of the input channels.

Proof The correctness of the operations applied by the al-
gorithm has been proven in Theorems 2 and 3. Therefore, the
set A∗α of actions that can be fired at a given moment is a subset
of the set A of candidates obtained by the algorithm. If the
action in A with the highest priority can be fired, it is (i) an
element of A∗α and (ii) the action with the highest priority in
A∗α, since A∗α⊆A. π will thus fire the same action as α.
If this method works for any state and input combination,

π and α will always fire the same actions and are therefore
functionally equivalent, which follows from Theorem 1. �

3.2 Classification of Dataflow Actors
So far, we have seen a technique to construct a Kahn pro-

cess from a dataflow actor. It tries to determine at runtime
the next action to be fired. Only if this always succeeds, a
correct translation was obtained and the actor can be shown
to be KPN compatible. In the following, we present a static
analysis method that determines if this holds true by systematic-
ally checking all possible outcomes of the SelectNextAction
function introduced previously.
To this end, we construct a tree that contains all possible

operations SelectNextAction might perform, i.e. reducing
the set of firing candidates and prefetching tokens, depending
on certain conditions that can be fulfilled or not. As this tree
gives information about which tokens are fetched in which order,
we call it the peek sequence tree (PST); a more formal definition
is given later on.
For the example actor from Table 1, which was discussed

above, the PST is given in Fig. 2. Every node represents a pos-
sible iteration of SelectNextAction, with the set A of firing
candidates and the set P of tokens to be prefetched. The root
node (marked as a) represents the initialisation step. The outgo-
ing edges of each node (i.e. those leading further away from the
root node) represent the different possibilities of how the Select-

109

NextAction may proceed, leading to the next iteration step in
the respective cases. They are annotated with a condition to be
met such that the edge is followed. Since the prefetch token set of
the root node is empty, the conditions leading away from it only
contain the actor state s. The edge annotations further down will
also have conditions concerning the prefetched tokens. Note that
all these conditions are mutually exclusive for edges leaving the
same node. However, they need not cover all possible cases, but
only those which are covered by the actions of the original actor.
The leaves of the tree are equivalent to all possible outcomes

of SelectNextAction:

• The iteration scenario discussed in Section 3.1 is repres-
ented by the path a – c – e.

• Node b is a very straightforward case in which the action
to fire is determined only by the state of the actor.

• Nodes h, i and g represent cases in which, due to repeated
token prefetching and firing candidate elimination, only
one action to fire is left.

• Finally, in the case of node d, the action to fire cannot
be determined. This is because action a6 has a higher
priority than a5, but also needs more input tokens. The
actor would thus fire a6 if these tokens are available and
a5 otherwise. The example actor regarded here is thus
not KPN compatible.

• Another possible case, which does not occur in this ex-
ample, is that of an ambiguous actor specification. An
actor is specified ambiguously if it has two actions with
the same priority, without mutually exclusive guards and
if the input token set of the one action is a subset of that of
the other action. In the PST, this would lead to a leaf with
multiple actions of the same priority. One possible way
of handling this issue would be to arbitrarily give priority
to one of the actions. This is done in many backends as
well as in [20]. In this work, however, since our final goal
is translation to a KPN process, we choose a conservative
approach and do not classify the actor as KPN compatible
in order to prevent a translation when the actor semantics
as intended by the programmer are not clear.

In the following, we will give the formal definition of a PST
and we will show how to construct it. To this end, we first
discuss how the predict〈�〉 function introduced earlier can be im-
plemented. We do so by assuming that every guard is a boolean
and combination of multiple terms referred to as constraints.
According to our following definition, a constraint requires a set
of tokens (the peek tokens) in order to be evaluated and it can
be met or not, according to a boolean function:

Definition 9 Let Iα be a set of input channels and Sα a set of
possible states of an actor α. A constraint to an action for α
is a tuple c=(pc,ec) with pc∈Ψ(Iα) a token set of peek tokens
and ec :Sα×V (pc)→{true,false} the evaluation function.
The negation of a constraint c is given as c :=(pc, not(ec)).

Likewise, the combination of two constraints c and d is given
as c∧d :=(pc∪pd, ec∧ed).
With this definition, a guard can be expressed as the boolean

and combination of all elements in a set of constraints. There-
fore, we can assign each action such a set representing its guard.
To be able to evaluate as many constraints as early as possible
and thus maybe to eliminate certain actions as firing candidates

early on, we would like to break down each guard into as many
constraints with as small peek token sets as possible.
Definition 10 Let a be an action. The constraint set Ca of
a is a set of constraints such that∧

c∈Ca

c = (p,ga), p⊆ra

and that for each constraint c∈Ca, there are no two constraints
c′, c′′ 6=c such that c′∧c′′=c.
In the example actor described in Table 1, the guard of action

a4 can be decomposed to the constraint set
Ca4 ={ ({}, s=2), ({X[0]}, X[0]=2),

({X[0],X[1],Y [0]}, X[1]·Y [0]≤0) }.
Our definition of a PST is now as follows:

Definition 11 A peek sequence tree (PST) for an actor
α is a tree T =(N,L) on which each node n∈N is annotated
with a set of actions A(n)⊆Aα and each edge l∈L is annotated
with a constraint c(l).
We define the prefetch token set of a node according to

Theorem 3:
Definition 12 Let n be a node in a PST. Then its prefetch
token set is P(n)=

⋂
a∈A(n)ra.

A PST T =(N,L) must fulfil the following conditions: For
each edge l∈L with n∈N being its parent (source) node, it
must hold that pc(l)⊆P(n). For any two edges l,m∈L with a
common parent node, it must hold that c(l) and c(m) cannot
be satisfied at the same time, i.e. ec(l)∧c(m)≡false.
The rest of this section describes the construction of a PST for

an actor α. This procedure can be formalised as follows: A root
node n0 is created with A(n0)=Aα. For each action a∈A(n0),
the set of evaluable constraints C′a = {c ∈ Ca|pc ⊆ P(n0)} is
determined and combined to the strictest evaluable constraint
c′a =

∧
c∈C′a

c, i.e. the largest top-level sub-expression of ga
that can already be evaluated with the tokens available through
prefetching. (If C′a is empty, we have c′a=({},true).) For action
a4 from the example actor, the strictest evaluable constraint for
the root node is c′a4 =({},s=2).
From these k := |A(n0)| strictest evaluable constraints, each

one can theoretically be met or not, which in total gives 2k cases.
These cases can be expressed as a set of constraint combinations

Ctheo(n0):=

 ∧
a∈A(n0)

xa

∣∣∣∣∣∣ xa∈{c′a,c′a}
.

For the example actor, the possible cases for the root node
are s = 1 ∧ s = 2 ∧ s = 2 ∧ ..., s=1 ∧ s = 2 ∧ s = 2 ∧ ...,
s=1∧s=2∧s=2∧... etc.
As constraints are often related and some contradict each

other, not all of the combinations are satisfiable, as clearly seen in
the example. Using a satisfiability modulo theories (SMT) solver,
which is also provided with the set Sα of possible states of α,
one can eliminate the unsatisfiable combinations. Also the case
that none of the constraints is met can be eliminated, since this
case is not covered either in the original actor. In the example,
all of the 26 =64 possibilities are eliminated except for three:
• s=1∧s=2∧s=2∧s=2∧s=3∧s=3
• s=1∧s=2∧s=2∧s=2∧s=3∧s=3
• s=1∧s=2∧s=2∧s=2∧s=3∧s=3

These combinations obviously simplify to s=1, s=2 and s=3,
which have been noted down in Fig. 2. In the real implementa-
tion, the number of satisfiability evaluations can be reduced by
applying various optimisations that shall not be discussed here.

110

Table 2: Satisfiability calculations for the PST in Fig. 2 at node c

Actions Constraint combination Eliminate?

{} s=2∧true∧X[0]=1∧X[0]=2 Yes, empty set
{a2} s=2∧true∧X[0]=1∧X[0]=2 No, retain
{a3} s=2∧true∧X[0]=1∧X[0]=2 Yes, unsatisfiable
{a2,a3} s=2∧true∧X[0]=1∧X[0]=2 No, retain
{a4} s=2∧true∧X[0]=1∧X[0]=2 Yes, unsatisfiable
{a2,a4} s=2∧true∧X[0]=1∧X[0]=2 No, retain
{a3,a4} s=2∧true∧X[0]=1∧X[0]=2 Yes, unsatisfiable
{a2,a3,a4} s=2∧true∧X[0]=1∧X[0]=2 Yes, unsatisfiable

For each of the cases that have not been eliminated, a child
node is inserted. The edge to it is annotated with the constraint
combination corresponding to the case. The child node itself
is annotated with the set of all actions the strictest evaluable
constraint of which was assumed to be met in the constraint
combination. See Fig. 2 for the example actor.
For all the child nodes, the same procedure is carried out

recursively. However, only constraints that could not be eval-
uated before are regarded now. The old constraints are taken
into account by combining all constraints of the edges that lead
from the root node to the current node and by adding this
combination as an additional constraint for the SMT solver.
Table 2 shows the procedure for node c in the PST for the
example actor. The constraint “inherited” from above is s=2;
it is therefore only added at the beginning of each combination.
As soon as only one child node would be inserted for a node,

the recursion is stopped.
We can upper bound the complexity of the proposed algorithm

to construct the PST:
Theorem 5 For an actor with k actions, the maximum number
of nodes in the PST is smaller than 2 1

2 (k2+k).
Proof If a child node has the same number of actions as
its parents, no progress is made and the recursion is stopped.
Therefore, a child has in the worst case one action less than its
parent. In the worst case, the root node can have up to 2k−1
child nodes. Each of these child nodes can then have up to 2k−1−
1 children, which again can have 2k−2−1 children each and so
forth. Multiplying these numbers, one obtains the maximum
number of leaves in the tree. Also counting the non-leaf nodes,
one has 1+(2k−1) ·

(
1+(2k−1−1)·(1+...)

)
< (1+2k−1) ·(1+

2k−1−1)·...=2k ·2k−1···20 =20+1+2+...+k=2 1
2 (k2+k). �

Note that this is the upper bound for pathological cases. In
our experimental evaluations with 381 real actors, the num-
ber of nodes stayed way below it in each case. Section 4 will
show that even for large actors, the tree can be constructed
in an acceptable time frame in spite of its theoretically expo-
nential complexity. In extreme cases, one could stop the PST
construction prematurely without a classification result.

3.3 Constructing the translated Kahn process
With the results from the classification problem in mind, the

solution to the translation problem is straightforward. If an
actor has been classified as KPN compatible, one just needs to
construct a process as described in Section 3.1.
One can simply implement the SelectNextAction function

as shown there for determining the action to fire. This has the

0 100 200 300

W&R

This

t.-d.

unsure

dynamic(quasi) static

KPN compatible

number of actors
Figure 3: Overall comparison of the classification results of the
algorithm of Wipliez and Raulet (“W&R’) and that proposed in this
paper(“this”). The abbreviation “t.-d.” stands for time-dependent;
“unsure” designates potentially KPN incompatible actors.

advantage that the complexity of this algorithm is polynomial
with respect to the number of actions.

In practice, however, more lightweight code can be generated
directly following the structure of the PST constructed during
classification. For each node, prefetching code needs to be pro-
duced whereas each edge in the tree will be a branch in the
code. Like this, dynamic predictions of guards can be replaced
by simple, hard-coded if statements.

4. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed

classification and translation algorithm using a state-of-the-art
dataflow benchmark suite. The goal is to answer the following
questions: a) What percentage of realistic RVC-CAL act-
ors does the proposed algorithm classify as KPN compatible?
b) What are the reasons for KPN compatible actors not being
classified as such? c) Does the proposed translation of KPN
compatible dataflow actors into Kahn processes indeed improve
the performance of streaming applications?

4.1 Experimental Setup
The proposed classification and translation algorithm has been

implemented as an extension to the Open RVC-Cal Compiler
(ORCC) [21] using the z3 SMT solver [8]. The correspond-
ing ORCC benchmark suite [1] contains a total of 549 CAL
actors. In order to provide meaningful data, current research
projects (i.e. immature work under construction) as well as
overly simplistic actors such as “hello world” examples have
been left out from the evaluation. With the exception of those,
the proposed classification algorithm has been tested on all
available actors, 381 in total. In particular, the set of applica-
tions contains various video decoders (H.265 part2, H.264 PHiP,
H.264 CBP and MPEG-4 SP, AVS), the JPEG and JPEG2000
image compression codecs, for telecommunications the ZigBee
transmitter baseband description and a digital predistortion
filter [11], a set of basic digital filters, a cryptographic library, a
WAV audio player, a GZIP decompressor and implementations
of several CHSTONE benchmark suite applications.
The classification algorithm discussed above was run on an

Intel Core i5-3210M processor, as a single threaded implement-
ation. The classification of all 114 actors of the H.264 PHiP
decoder, one of the most elaborate dataflow applications in the
benchmark suite and with several highly complex actors, took
about 65 seconds.

4.2 Comparison to Other Classifiers
In the following, we evaluate the performance of the pro-

posed classification algorithm. To this end, we first regard the
counts of the different classification results for the algorithm
proposed in this work and for the algorithm by Wipliez and
Raulet (W&R) [20]. These numbers are given in Fig. 3.

111

For W&R, the group (quasi) static combines the three pos-
sible results SDF [13], CSDF[4] and quasi-static [5], which are
all KPN compatible by construction.
Actors are marked as time-dependent by the W&R classifier

if it finds constellations similar to that in node d in Fig. 2.
As explained in Section 3.2, such actors are KPN incompat-
ible. Note, however, that time-dependency is not the same as
non-determinacy; it is only a necessary condition for the latter.
Finally, all other actors are classified as dynamic, i.e. determ-

inate but not (quasi) static. These actors may or may not be
KPN compatible.
The two classifiers regarded here cannot be compared directly

for two reasons: Firstly, the different classification categories and
secondly, their different treatment of ambiguous actor specific-
ations as described in Section 3.2. The W&R classifier enforces
(arbitrarily) a total priority ordering of all actions, which, in
the extreme case, leads to an actor being classified either as
time-dependent or as quasi static, depending on the order of
the action specifications in the source code. The classifier we
propose always classifies actors with ambiguous specifications
as potentially KPN incompatible.
Consequently, we have to look at the cases in closer detail:

• The results of the (quasi) static group of W&R can be
confirmed by our algorithm in so far as it classifies all
of the concerned actors as KPN compatible. The only
exception is given by three ambiguously specified actors.

• The W&R classification of actors as time-dependent uses
similar criteria to those in the algorithm we propose. Ac-
cordingly, none of the actors classified as time-dependent
was classified as KPN compatible by the algorithm pro-
posed in this work. However, manual classification showed
that more than a quarter of these actors are KPN com-
patible, which was not recognised by the algorithms. The
reasons of W&R time-dependent misclassifications and
their frequency are similar to those for non-classifications
in our algorithm, which will be discussed later on in detail.

• Out of the actors classified as dynamic byW&R, 75%were
classified as KPN compatible. Another 7% of these actors
is KPN compatible as well but were not recognised as
such. Note that these rates do not differ significantly from
the overall KPN classification rate of 77% with additional
6% not recognised. In other words, for the regarded set of
actors a W&R classification as dynamic does not provide
information about the KPN compatibility of an actor.

In summary, the W&R classifier can – leaving aside the am-
biguously specified actors – classify 185 out of 363 actors (or
51%) with certainty as KPN compatible, whereas the algorithm
proposed in this work can do the same with 292 actors (or 80%).
The number of recognised KPN compatible actors is thus 58%
higher.

4.3 Comparison to Manual Classification
In addition to the comparison with other classifiers, we also

investigated on an absolute scale the classification quality of the
algorithm proposed in this work. To this end, we undertook a
manual classification effort of all the actors in the set.
Since the algorithm we propose guarantees KPN compatibility

for all actors classified accordingly, we did not cross-check all
of these actors manually, but we took samples at random and
were able to validate the correctness of the algorithm and its
implementation.

Classified KPN
292

KPN, not recognised
23

Determinate, non-KPN28

Non-Determinate or
ambiguous specification38

Figure 4: Manual classification results

Listing 4: Simplified example for a KPN compatible actor not
recognised as such.

bool ax := false , bx := false , cx := false ;
a: action => guard !ax do ax := true ; end
b: action => guard ax and !bx do bx := true ; end
c: action => guard bx and !cx do cx := true ; end

All actors which the algorithm did not classify as KPN compat-
ible were checked manually with the help of its output. Figure 4
shows the results of this manual classification effort. While 292
of the 381 actors were correctly classified as KPN compatible,
there are 23 more KPN compatible actors, which, however, were
not recognised as such. 66 actors are not KPN compatible
for various reasons, which will be discussed in Section 4.4. In
summary, our classifier in 94% of the cases obtained the same
result as an ideal classifier would. The optimisation possibilities
for the other 23 cases will be discussed below. Note that we
classified all actors on the basis of the given implementation, not
on the basis of whether there could exist a KPN compatible
implementation of their functionality.
During manual classification, we analysed why KPN compat-

ible actors were not recognised as such. With the exception of
one actor, which caused an error of the SMT solver, the reason
was always the determination of the actors’ state sets (Sα for an
actor α). The implementation we used for the experiments is
very simplistic: It assumes all combinations of all possible values
of the actor’s state variables to be the set of states the actor can
have instead of analysing the actions to find out which values
and which combinations thereof can actually be attained.
Listing 4 shows a simplified, but realistic example, in which

there are three actions a, b and c, each of which during execution
sets a state variable to true to indicate it has been fired. Their
guards ensure no action is fired twice and each action is only
fired after the one above it. Thus, actions a, b and c are fired in
exactly that order. The classifier will, however, notice that the
guards of actions a and c are not mutually exclusive since it can-
not establish a link between the three state variables. It will thus
conclude that these two actions can be fired at the same time and
it will assume an ambiguous specification. Intelligent state ana-
lysis, however, would yield that the combination ax=false and
bx=true is not contained in the state set of the actor. Using this
information, the guards of actions a and c could be recognised
as mutually exclusive and the actor as KPN compatible.

4.4 Further results of manual classification
The manual classification also provided results concerning the

nature of the KPN incompatible actors. Although these results
do not affect the classification performance of the algorithm
proposed in this work, they can give hints about how it might

112

Listing 5: Simplified example for an unintentionally KPN incompat-
ible actor.

actor Sum ()
int DataIn , bool EndOfStream ==> int SumOut :

int sum := 0;

readData : action DataI :[i] ==>
do sum := sum + i;

end

done : action EndOfStream :[eos] ==> SumOut :[sum] end

priority
readData > done

end
end

be used to aid programmers in writing actors or about which
other classifications might be desirable to have.
The actors analysed here can be divided into two groups: de-

terminate but KPN incompatible actors, which always produce
the same output for the same input but cannot be expressed as
Kahn processes, and non-determinate or ambiguously specified
actors, which may produce different output for the same input.
Both groups will be discussed in the following.

The group of determinate, yet KPN incompatible act-
ors is quite diversified. In addition to actors similar to that
shown in Listing 3, it features two more kinds of actors.
One kind of actors performs multiple unrelated operations.

These actors could, in fact, be replaced by multiple Kahn pro-
cesses. A (sequential) Kahn process as defined in Definition 1,
however, cannot produce this behaviour.
Another kind of actors contains two sets of actions: The

first set describes the actor’s main behaviour and is completely
KPN compatible. In parallel to it, the second set has the task
of pre-buffering input tokens in internal buffers of the actor.
This is a low-level optimisation with the idea that if the actor
cannot perform the main calculations, it can still use the time
for pre-buffering data. While the order and the firing counts of
the actions thus vary, the output is still always the same and
these actors are determinate.

Non-determinate or ambiguously specified actors may
produce different output for the same input. However, the two
groups differ in one point: While ambiguous specifications should
clearly be avoided, non-determinacy is sometimes necessary, for
instance in the case of a video streaming application which has
to react to video input not arriving within a certain deadline.
From the semantics of each of the 20 non-determinate actors

amongst the actors regarded in this evaluation, however, it can
be concluded that non-determinacy in these cases is unintended.
This meets the fact that all of the applications (video decoders,
cryptographic applications etc.) in the set are supposed to be
determinate.
The possible programming mistakes we identified amongst

non-determinate and ambiguously specified actors are often the
same. In most cases, it seems the author of the concerned actor
did not realise that two guards actually overlap each other. In
the case of ambiguity he may also have forgotten to specify
a higher priority for one of the actions. The fact that most
backends in such cases typically fire the action which comes
first in the source code leads unfortunately often to this kind
of error not being discovered.
In other cases assumptions about the input are made, usu-

ally founded on the concrete data sent in a particular graph.
However, the behaviour of an actor is clearly defined only if it
is unambiguous for any input.

Table 3: Execution time of CAL actors when being scheduled either
using the default scheduler of ORCC or as a Kahn process.

actor platform scheduler speed-upORCC Kahn
mvseq DSP 156691 cycles 85249 cycles 1.84x
invpred DSP 129641cycles 83478cycles 1.55x
mvseq RISC 241544cycles 151636cycles 1.59x
invpred RISC 453836 cycles 230188cycles 1.97x

In the case of non-determinacy, we found another pattern,
which is illustrated in Listing 5. This actor reads data on one
channel and is informed about the end of the data stream on
a second channel (typically, both channels come from the same
process). While this apparently worked well in the tests of the
programmers, wrong output would be produced if the data
channel delayed the tokens for longer than the end-of-stream
channel, such that the end-of-stream token arrived before the
last data tokens. This situation could be avoided if the data
channel supported the transmission of special control tokens. In
this case, the second channel would not be necessary and the
actor would actually be KPN compatible.
All these results show that KPN-incompatibility is often un-

intended. Especially for larger actors (there are several with
more than 2000 lines of code), a KPN compatibility analysis, as
performed by the algorithm presented here, may thus prove to
be a valuable tool for a programmer, even if he does not target
a KPN implementation of his actors.

4.5 Performance of a Dataflow Actor and a
KPN Process

Next, we evaluate if the proposed translation of a KPN com-
patible actor to a Kahn process can be used to improve the per-
formance dataflow graphs. To this end, C versions of the trans-
lated Kahn processes were generated as described in Section 3.3
and compared to C code generated conventionally by ORCC[21].
The code was compiled and then run on two systems:
• A Texas Instruments TMS320C6416 Fixed Point DSP
featuring L1 instruction and data caches of 16KB each.
The evaluation was done on the Texas Instruments cycle
accurate device simulator, which takes account of cache
behavior. The CCS IDE version was 5.5.0.

• An Altera Nios II/f RISC processor with 4KB L1 instruc-
tion and 2KB L1 data cache. The evaluation was done
by synthesizing the processor core on an Altera Stratix
III FPGA and by measuring the cycle time with the Sig-
nalTap II logic analyzer. The Quartus II software version
was 13.1.

The measurements were performed with two different actors:
The “Mgnt_MVSequence_LeftAndTopAndTopRight” actor
(mvseq) and the “Algo_DCRInvPred_LUMA_16x16” actor
(invpred), both from the MPEG-4 Part 2 Simple Profile decoder.
The former consists of 7, the latter of 10 actions. The achieved
results are summarized in Table 3.
For these actors, a speed-up between 1.55x and 1.97x was

achieved. The reason for these improvements is that, instead
of linearly iterating over all actions like CAL implementations,
the KPN translation follows the structure of the PST, i.e. it
performs a sort of binary search for the next action to be fired.
It also does not need to check the availability of tokens.
Of course, the influence of this overhead reduction decreases

with a higher computational complexity of the actions to be fired.
Still, the examples show its relevance in real production code.

113

5. RELATED WORK
Classifying dataflow actors into more restrictive dataflow

models has recently been considered as an efficient technique to
improve the execution performance of dataflow graphs, e.g. by
reducing the number of communication channel accesses. In
particular, a methodology to classify dataflow actors into actors
adhering to the synchronous dataflow (SDF) [13] model and
the cyclo-static dataflow (CSDF) [4] model is presented in [22].
In order to model dynamic and time-dependent behavior, each
actor is described by a finite state machine that controls the
communication behavior of the actor. In contrast to our work,
their approach is limited to only classify static dataflow actors.
A method to classify dataflow actors into static, dynamic,

and time-dependent actors is presented in [20] based on satis-
fiability and abstract interpretation. While this method can
identify SDF, CSDF and quasi-static actors, which are KPN
compatible by construction, it cannot identify more general
patterns of KPN compatibility. The method for detecting time
dependency could be used for showing KPN incompatibility,
but is somewhat inaccurate as seen in Section 4. With its ability
to identify (quasi) static actors, it can, like [22], be regarded as
a complement to our approach.
In [17], a scheduling approach for semi-dynamic dataflow

graphs is presented. To this end, a novel dataflow model is in-
troduced that constructs actors with sets of modes representing
fixed behaviors. Then, it is shown that a set of static dataflow
graphs can be derived by decomposing the graph by its modes.
Other approaches trying to improve the performance of data-

flow actors exist, e.g. by scheduling the actor more efficiently. For
instance, the technique proposed in [6] identifies most scheduling
decisions of a dynamic dataflow actor at compile time by de-
termining most of the schedule statically. In [10], this approach
has been extended to also analyze the state space of certain
network partitions.
Outside the field of dataflow networks, the problems of availab-

ility of input variables and of obtaining them has been discussed
as well. Among others, [3] and [19] analyse formal representa-
tions of algorithms with a particular focus on fetching variables.
[2] investigates in the domain of synchronous programming
whether a given module can iteratively infer the availability of
all required input variables from its state (endochrony). All these
approaches have in common that they work on program descrip-
tions in which every input variable has to be fetched explicitly.
This form of specification has natural representations as trees
or graphs similar to the PST shown in this work. In dataflow
networks, however, fetching all input variables upon firing an
actor is one atomic operation as well as checking if an actor can
fire. Breaking up these atomic operations and constructing a
PST is thus less obvious than with other programming models
and the actual contribution of this work.

6. CONCLUSION
In this paper, we have presented a novel algorithm to classify

dataflow actors that are specified according to the CAL language
into KPN compatible and potentially KPN incompatible actors.
A dataflow actor is KPN compatible if it can be represented as
an infinite program that only performs blocking, destructive read
accesses, calculations and non-blocking write accesses. Based on
the classification algorithm, we have described a formal method
to translate a KPN compatible dataflow actor into a Kahn
process. We have demonstrated the viability of our algorithms
by implementing them in the RVC-CAL framework. In fact, the
proposed classification algorithm has been capable to identify

93% of all KPN compatible, mature actors from the ORCC
benchmark suite. Finally, we have shown that the performance
of KPN compatible actors can be improved by up to 1.97x when
executing them as Kahn processes instead of dataflow actors.

7. ACKNOWLEDGEMENTS
This work was supported in part by the Academy of Finland

projects DORADO and UNICODE and by the UltrasoundToGo
RTD project (no. 20NA21 145911), evaluated by the Swiss NSF
and funded by Nano-Tera.ch with Swiss Confederation financing.

8. REFERENCES
[1] Open RVC-CAL Application Repository.

https://github.com/orcc/orc-apps, 2014.
[2] A. Benveniste et al. Compositionality in dataflow synchronous

languages. Inf. Comput., 163(1):125–171, Nov. 2000.
[3] G. Berry and P.-L. Curien. Sequential algorithms on concrete data

structures. Theoretical Computer Science, 20(3):265–321, 1982.
[4] G. Bilsen et al. Cycle-Static Dataflow. IEEE Transactions on

Signal Processing, 44(2):397–408, 1996.
[5] J. Boutellier et al. Quasi-static scheduling of cal actor networks for

reconfigurable video coding. Journal of Signal Processing Systems,
63(2):191–202, 2011.

[6] J. Boutellier, M. Raulet, and O. Silvén. Automatic Hierarchical Dis-
covery of Quasi-Static Schedules of RVC-CAL Dataflow Programs.
Journal of Signal Processing Systems, 71(1):35–40, 2013.

[7] J. Ceng et al. MAPS: An Integrated Framework for MPSoC
Application Parallelization. In Proc. Design Automation
Conference (DAC), pages 754–759, 2008.

[8] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. Springer, 2008.

[9] J. Eker and J. Janneck. CAL Language Report. Technical report,
University of California at Berkeley, Dec 2003.

[10] J. Ersfolk et al. Scheduling of Dynamic Dataflow Programs based
on State Space Analysis. In Proc. IEEE Int’l Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), pages 1661–1664, 2012.

[11] A. Ghazi et al. Low power implementation of digital predistortion
filter on a heterogeneous application specific multiprocessor.
In Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), pages 8336–8340, May 2014.

[12] G. Kahn. The Semantics of a Simple Language for Parallel
Programming. In Proc. IFIP Congress in Information Processing,
volume 74, pages 471–475, 1974.

[13] E. A. Lee and D. G. Messerschmitt. Synchronous Data Flow.
Proceedings of the IEEE, 75(9):1235–1245, 1987.

[14] E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings
of the IEEE, 83(5):773–801, 1995.

[15] D. B. MacQueen. Kahn networks at the dawn of functional
programming. From Semantics to Computer Science: Essays in
Honour of Gilles Kahn, pages 95–137, 2009.

[16] M. Mattavelli, I. Amer, and M. Raulet. The Reconfigurable
Video Coding Standard. IEEE Signal Processing Magazine,
27(3):159–167, 2010.

[17] W. Plishker, N. Sane, and S. Bhattacharyya. A Generalized
Scheduling Approach for Dynamic Dataflow Applications. In Proc.
Conf. on Design, Automation and Test in Europe (DATE), pages
111–116, 2009.

[18] L. Schor et al. Scenario-Based Design Flow for Mapping Streaming
Applications onto On-Chip Many-Core Systems. In Proc. Int’l
Conf. on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), pages 71–80, 2012.

[19] G. Winskel. Event structures. In Petri Nets: Applications and
Relationships to Other Models of Concurrency, volume 255 of
Lecture Notes in Comp. Science, pages 325–392. Springer, 1987.

[20] M. Wipliez and M. Raulet. Classification of Dataflow Actors
with Satisfiability and Abstract Interpretation. Int’l Journal of
Embedded and Real-Time Communication Systems (IJERTCS),
3(1):49–69, 2012.

[21] H. Yviquel et al. Orcc: Multimedia Development Made Easy. In
Proc. Int’l Conf. on Multimedia, pages 863–866. ACM, 2013.

[22] C. Zebelein et al. Classification of General Data Flow Actors into
Known Models of Computation. In Proc. Int’l Conf. on Formal
Methods and Models for Co-Design (MEMOCODE), pages
119–128, 2008.

114

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

