
Why Silent Updates Boost Security

Thomas Duebendorfer
Google Switzerland GmbH

Stefan Frei
Swiss Federal Institute of Technology

(ETH Zurich)

ETH Tech Report TIK 302
http://www.techzoom.net/silent-updates

insecurity-iceberg@tik.ee.ethz.ch

ABSTRACT
Security fixes and feature improvements don’t benefit the
end user of software if the update mechanism and strategy
is not effective. In this paper we analyze the effectiveness
of different Web browsers update mechanisms; from Google
Chrome’s silent update mechanism to Opera’s update re-
quiring a full re-installation. We use anonymized logs from
Google’s world wide distributed Web servers. An analysis
of the logged HTTP user-agent strings that Web browsers
report when requesting any Web page is used to measure the
daily browser version shares in active use. To the best of our
knowledge, this is the first global scale measurement of Web
browser update effectiveness comparing four different Web
browser update strategies including Google Chrome. Our
measurements prove that silent updates and little depen-
dency on the underlying operating system are most effective
to get users of Web browsers to surf the Web with the latest
browser version. However, there is still room for improve-
ment as we found. Google Chrome’s advantageous silent
update mechanism has been open sourced in April 2009.
We recommend any software vendor to seriously consider
deploying silent updates as this benefits both the vendor
and the user, especially for widely used attack-exposed ap-
plications like Web browsers and browser plug-ins.

Categories and Subject Descriptors
C.4 [Measurement techniques]: Miscellaneous

; C.2.3 [Network monitoring]: Security

General Terms
Updates, Security, Measurement

Keywords
Web browser, Update

1. INTRODUCTION
Our global scale measurements of Web browsers in use [1]

from mid 2008 found that 45.2% of Internet users were not
using the latest Web browser version when visiting Google
Web servers. If people keep using an outdated Web browser
version with known vulnerabilities, they can easily fall vic-
tim to any of the millions of malicious Websites that ex-
ecute drive-by downloads to infect the visitor’s computer
with malware. In April 2009, Finjan discovered a bot net-
work of more than 1.9 million [2] infected computers, which

was built up since February 2009 by using drive-by down-
loads as primarily infection channel.

In our study [3], we found that in June 2008, the Mozilla
Firefox Web browser was having the most effective update
mechanism of any popular browser. However, throughout
June 2008, at most 83% [1] of all active Mozilla Firefox users
were using the latest Mozilla Firefox version. We were won-
dering if one cannot do even better than Mozilla Firefox by
deploying a different update mechanism in a Web browser.

The Google Chrome Web browser [4], which was released
to the public as beta in September 2008 and came out of beta
in December 2008, is using a so-called silent update mech-
anism. The user currently cannot disable auto-updates in
Google Chrome, which is different from any other browser
update mechanism in use today. This gave us a great oppor-
tunity to evaluate the effectiveness of Google Chrome’s up-
date mechanism by comparing it to other Web browsers us-
ing the same data source and a similar measurement method-
ology as used in our two previous Web browser studies.

2. WHY UPDATE EFFECTIVENESS MAT-
TERS

Keeping software up-to-date brings several benefits to the
user:

• increased security thanks to timely deployment of se-
curity vulnerability fixes

• better software stability thanks to timely bug fixes

• new features that make software more powerful

At the same time, getting all users to work with the latest
software release is also advantageous for the vendor:

• most likely happier users due to more stable, more
secure applications with additional features

• less support required: only unfixed bugs in the latest
version get reported by users

• less testing: engineers don’t have to keep testing older
versions on newer platforms and with new third party
software or drivers

Now, imagine user experience of your software, if a third
or more of the user base is not using the latest version as this
was the case for Apple Safari, Opera, and Microsoft Internet
Explorer in mid 2008. This large user base will never see the



0
50

10
0

15
0

20
0

25
0

Web Browser

1996 1998 2000 2002 2004 2006 2008

Risk Rating (CVSS)

year

vu
ln

er
ab

ili
tie

s

total

low
● ● ●

●

●

●

●

●

●

●

●

●
● med

high

●

Total
low risk
medium risk
high risk

0
50

10
0

15
0

20
0

25
0

Plug−Ins

1996 1998 2000 2002 2004 2006 2008

Risk Rating (CVSS)

year

vu
ln

er
ab

ili
tie

s

total

low● ● ●

● ●
●

●
●

●
●

● ● med
high

●

Total
low risk
medium risk
high risk

Figure 1: Number of vulnerabilities reported per year from 2000 to 2008 for Web browsers and popular
plug-ins split by CVSS risk rating. Source: National Vulnerability Database (NVD)

improvements and new features of the latest version - and
will be unnecessarily exposed to old threats.

In the optimal case, all users would always be using only
the latest release of a software. However, this also introduces
a big drawback: The software gets even more dynamic as
each time it is used, it could be a different version with some
unexpected features or new behavior. This takes control
away from the user and gives it to the software vendor, which
some power-users don’t like. Furthermore, some developers
need to control which version of a software they run, mostly
for testing purposes. However, most of this testing would
no longer be needed if all users were always using the latest
version.

Interestingly, this optimal case is actually widely in use
nowadays with software as a service in the form of Web
based (e.g. AJAX) applications. Code in many Web appli-
cation implementations changes frequently without the user
even noticing it as most is done ”under the hood” and not
visible in the user interface. The large majority of Web ap-
plications does not even expose a version number to the end
user because there’s simply no need to care about updates of
Web applications for the user. The underlying Web servers
and frameworks often expose a version number in the HTTP
headers. However, we’re speaking here of the actual business
logic code built on top of it. Despite the ”loss of control”
argument, most users have accepted this fact. We think
that using silent updates makes sense also for many pro-
grams installed on end user systems. In the end, it should
not matter for the user where and how the application is
installed as long as a high service quality, compatibility and
appropriate user data privacy is respected.

3. TRENDS IN WEB BROWSER AND WEB
SERVER INSECURITY

Tracking the number of vulnerabilities discovered each
year in Web browsers from year 1996 to 2008 as shown in
Figure 1 reveals a clear trend: The total number of Web
browser vulnerabilities reported in the National Vulnera-
bility Database (NVD) [5], which were rated low, medium
or high risk in the Common Vulnerability Scoring System
(CVSS) [6], was increasing rapidly year over year since 2003.
From 2000 to 2007, the number of new vulnerabilities dis-

covered per year in popular Web browser plug-ins has more
than quadrupled. From 1996 to 2008, the most vulnerable
plug-ins were Apple Quicktime with a staggering number of
125 vulnerabilities found and Adobe Acrobat with 59 vul-
nerabilities reported.

On the other side, classical Web servers (i.e. Apache
HTTP Server, Microsoft Internet Information Server, Net-
scape Enterprise Server, IBM HTTP Server and Sun One
Web Server) had their last peak of reported new vulnera-
bilities in 2002 as shown in Figure 2. While classical Web
servers became less vulnerable over time, new Web applica-
tion servers and scripting engines became popular and intro-
duced new vulnerabilities in Web applications. For the PHP
scripting engine alone, 116 vulnerabilities were reported in
year 2007 alone, without counting vulnerabilities found in
PHP based Web applications (like php-nuke, phpbb, Typo3
and many more). Attackers exploit such vulnerabilities in
Web applications and misuse them to initiate drive-by down-
loads of malware to infect visiting vulnerable Web browsers.

Combined with the fact that most vulnerabilities were ex-
ploitable from the network and almost none needed local
access, the Web browser has clearly become a weak link in
the chain of systems that make the Internet work. Extrapo-
lating from the past, it’s very likely that Web browsers will
have vulnerabilities rated medium and high risk and which
are exploitable from remote in the near future as well. A
good practice to keep the network and end-users secure is
to patch known vulnerabilities as fast as possible. However,
to do so, Web browsers are in dire need of a very effective
update mechanism or they will lose the battle for securing
vulnerable Web browsers before their users fall victim to
attackers.

4. UPDATE MECHANISM VARIETY
We consider the different types of update mechanisms in

use by software today. The core steps on the client side in
an update process are:

• discover the update: learn about availability of the
update

• download the update: copy the update files to the lo-
cal system (after checking authenticity of the update
source)



0
50

10
0

15
0

Server Technologies

1996 1998 2000 2002 2004 2006 2008

Vulnerability count, all risks (NVD)

year

vu
ln

er
ab

ili
tie

s

● ● ● ● ●
●

● ● ●
●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

●

●
●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

Apache Tomcat
IBM WebSphere
BEA WebLogic
Web Server
Typo3 Script Engine
PHP Script Engine

Figure 2: Number of vulnerabilities reported per year from 2000 to 2008 for Web servers and various Web
application servers. Source: National Vulnerability Database (NVD)

• install the update: modify local installation with changes
introduced by the update (after checking integrity of
the update)

• apply the update: execute the software with the changes
by the update in effect

While each step looks trivial, the underlying question to
ask is how the delay from update availability to when the up-
date is applied by end users is influenced by each step in any
specific update mechanism in use. This ultimately reflects
in the effectiveness of the update mechanism as measured
by the share of users that have updated their software at a
given time after the release of a new patch. There are other
factors as well such as update policies (i.e. compatibility
requirements with existing (e.g. intranet) applications, or
a company wide schedule for updates etc.), willingness to
update (i.e. a new user interface might let people block an
update) and possibly licence cost (not applicable for most
Web browsers as they are available for free). We’ll briefly
summarize how the five most popular Web browsers get up-
dated. Given that each of them uses a different system and
update strategy, it’s clear that industry has not yet settled
on a single best practice yet.

Google Chrome Web browser checks for updates every
five hours. It is using the recently open sourced Google up-
date component code-named Omaha [7], which keeps polling
for updates even when Google Chrome is not running. To
control speed of update distribution and to throttle down-
load resource usage, the update servers report newly avail-
able updates only with a certain probability, which is set on
the server side per release. Once a new update is found to
be available on the server, the client automatically down-
loads and installs it in the background without prompting
the user. The new version of Google Chrome gets applied
at the next restart of the browser. At the time of this
writing, in April 2009, the user was not even prompted to

restart the browser after a new update was ready. Given
that the whole update process happens without any user in-
terruption, Google Chrome is said to have a ”silent update”
mechanism. As of April 2009, the user could not disable
update checks. A manual update can be initiated by choos-
ing ”About Google Chrome” in Google Chrome’s settings
menu.

Mozilla Firefox Web browser checks for updates peri-
odically in a frequent schedule while the browser is running.
The user can also check for updates manually with the menu
command ”Help” - ”Check for Updates ...”. When and how
often Mozilla Firefox checks for updates can be set by typing
”about:config” in the address bar and changing the variable
browser.cache.check doc frequency. The default value is 3.
The user can choose between once-per-session (0), each-time
(1), never (2) and when-appropriate/automatically (3). It’s
not further specified how often a setting of 3 checks for up-
dates but our daily update share measurements presented
in this paper indicate that it is least once a day. In the pref-
erences dialog box, the user can disable update checks for
Mozilla Firefox, installed add-ons and search engines. It can
be specificed whether Mozilla Firefox should ask what to do
if an update is found or if it should be automatically down-
loaded and installed (the default) and if there should be a
warning if any add-ons will get disabled by the update (the
default). Even though it says ”automatic”, the user will still
be prompted to accept a newly downloaded Mozilla Firefox
version before it is actually installed and applied by a restart
of the browser.

Apple Safari Web browser is updated through Apple’s
”Software Update” service integrated in OS X, which also
takes care of other system and application updates. The user
can choose to check for updates daily, weekly, monthly or
not at all. When updates are available, the user is prompted
to initiate the downloads and get them installed. Updates
that Apple considers ”important” can be chosen to be down-



Web browser discover up-
date automati-
cally

download update install update apply up-
date

Google Chrome every 5 hours automatically automatically; browser keeps run-
ning during installation; user is not
prompted to restart the browser
when new version is installed

with next
browser
start

Mozilla Firefox once per session,
each-time, when-
appropriate, or
never

automatically, manu-
ally, or never

manually with one mouse click;
browser must be closed during in-
stallation and will restart after-
wards

with next
browser
start

Apple Safari daily, weekly,
monthly, or never

manually, optionally
automatically for im-
portant updates, or
never

manually (often together with other
updates); browser sometimes must
be closed during installation

with next
browser
start

Opera weekly, or never manually or never manually (like a fresh browser in-
stall from scratch); browser must be
closed during installation

with next
browser
start

Microsoft Inter-
net Explorer

daily, weekly, or
never

automatically, manu-
ally. or never

automatically or manually; browser
sometimes must be closed during
installation

with next
browser
start

Table 1: Comparison of Web browser update mechanisms.

loaded automatically. Important and new updates are not
discovered instantly after availability as the update polling
schedule is as set by the user with at most one daily check.
During an update, affected applications sometimes have to
be closed, which is an annoyance to users. After installation
of the update, the next time Apple Safari is started, the new
version will be used.

Opera Software’s Opera Web browser, by default, checks
for updates every week and notifies the user when a new
update is available. A user choosing to update his browser
is then forwarded to the Opera download Web site, where
the update follows the same procedure as if the user were to
install Opera for the first time. This update procedure re-
quires serious user activity and typically about ten user deci-
sions on different dialogs, such as choosing the install/update
location, clicking the license agreement, closing the active
browser, etc. The frequency Opera checks for updates is
fixed. The weekly checks can be disabled in the ”opera:config”
window or directly in the configuration file setting the pa-
rameter ”Check For New Opera” to 0. The user can man-
ually check for pending updates at any time through an
option in the ”Help” menu. The upcoming major version
of Opera, version 10 now in alpha testing, will update itself
automatically as new versions are released [8].

Microsoft Internet Explorer Web browser gets up-
dated through the Automatic Updates service integrated
in the Windows operating system since Windows 98 and
more recent versions. In Windows XP, the user can choose
in the Security Center under ”Automatic Updates” settings
whether Windows should check for updates daily at a given
time or weekly on a specified week day. The user can choose
between four options: (1) automatic download and install,
(2) automatic download and prompting the user for when
to install, (3) automatic notification about updates without
downloading and installing them , and (4) turning automatic
updates off. The recommended setting is daily automatic
update checks, downloads and installs. Windows installa-
tions in companies are often configured to only accept up-
dates from a company internal update server at their own

schedule. Since October 2003, Microsoft has been following
the ”Patch Tuesday”, the second Tuesday of each month, to
release security patches. In rare cases, out-of-band patches
are made available in between the patch Tuesdays for highly
critical vulnerabilities such as to fix a vulnerability in Mi-
crosoft Internet Explorer [9] on Wed, December 17th, 2008,
which was believed to have been exploited to infect more
than two million computers. After installation of the up-
date, the next time Microsoft Internet Explorer is started,
the new version will be used.

We show an overview of the update features in Table 1.
Each Web browser software listed here also allows to man-
ually check for updates. All of the described systems poll
for updates from update servers and none of them gets up-
dates pushed directly. This is mainly for security reasons,
which often prevent Internet servers from contacting clients
directly. However, for the user, this does not make a differ-
ence besides an additional delay introduced for discovering
a new update.

After publication of our browser study [1] in July 2008,
we got many write-ins of users explaining to us why they
prefer not to update their Web browser. Some users simply
don’t want to update because updating can be very inconve-
nient. Most update mechanisms interrupt the user working,
some require him to wait for the download, prompt for in-
stallation at the most inconvenient time (i.e. during a public
presentation), some let the user busily wait during installa-
tion as the browser must be closed during this process, and
finally some updates break the system or expose the user to
a new user interface, which requires time to get used to it
or which the user simply does not like better than the old
user interface. In addition, there’s no guarantee that an up-
date can always be undone without side effects. Especially
with larger updates, the benefits of installing a new version
sometimes do not outweigh all the troubles an update could
cause to the user. If update mechanisms were designed with
ease of use and convenience in mind, users would be much
more willing to get updates deployed.

In terms of user interaction, only Google Chrome’s silent



update mechanism does not disturb the user at all. The user
is neither disturbed working by getting prompted for down-
load or installation of an update, nor does the user have to
quit the browser during installation of the update. The up-
date will simply be applied the next time the user decides to
restart the browser. While this totally silent update causes
no disruption to the user, it has the disadvantage that the
user is not actually made aware of the update and might
keep running an outdated version for days or weeks, even
though a newer version is already installed on the local sys-
tem. At least for security bugs, it would seem advantageous
to make the user aware of the installed update and ask for
a browser restart at the next convenience.

5. MEASURING UPDATE EFFECTIVENESS
To measure update effectiveness, we looked at the per-

centage of daily active users that use the newly released
Web browser version; with 100% being all users of the same
major version seen on the same day. By tracking the us-
age shares over three weeks after a new release, we could
determine how fast users update to the latest version and
compare the update performance between different releases
of the same and other browsers.

We used anonymized logs from Google’s world wide dis-
tributed Web servers and parsed the HTTP user agent string,
which each browser sends to any Web server, when request-
ing a Web page. The user agent string contains the browser’s
name and version number as well as some other information.
Here are two sample user agent strings of Mozilla Firefox
3.0.8 and Google Chrome 1.0.154.53:
1) Mozilla/5.0 (Windows; U; Windows NT 5.1; de;

rv:1.9.0.8) Gecko/2009032609 Firefox/3.0.8
2) Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US)

AppleWebKit/525.19 (KHTML, like Gecko)

Chrome/1.0.154.53 Safari/525.19

For eliminating duplicate visits on the same day, we count-
ed only the first Web request by each Web browser with the
same Google PREF cookie. We used the Pacific Daylight
(Savings) Time timezone as day reference because all but
one vendor of the considered Web browsers have their head
quarters in this time zone (with the exception of Opera,
which is based in Norway). We split the version number in
major and minor versions, e.g. Mozilla Firefox 3.0.8 has a
major version of 3. Upgrading between major versions is
a much bigger hurdle for users as the changes in the soft-
ware versions are larger and sometimes introduce incom-
patibilities and user interface changes. For this paper, we
focused on the update effectiveness within the same major
version of various Web browsers. We did not consider ”up-
grades” between different major versions in our study as
they have different characteristics than minor version up-
dates. Microsoft Internet Explorer only reports the major
version number and omits the minor version number in the
user agent string. The often stated reason for this omission
is to reduce information leakage and make it harder for an
attacker to select a working exploit for the actual browser
version in use. As we have seen drive-by download Web sites
trying many different exploits at once, it’s unclear how much
additional protection this omission really gives. Therefore,
based solely on our Web server logs, we cannot determine
the update speed of minor versions within the Microsoft In-
ternet Explorer population. However, for four other popular
browsers, namely for Google Chrome, Mozilla Firefox, Ap-

ple Safari, and Opera, the minor version gets reported.
Some inaccuracies in our measurements are possible, name-

ly due to Web browsers not sending any cookies, which we
dropped from our analysis, and those sending a fake user
agent string to disguise as a different Web browser. However,
the majority of ordinary Internet users are known not to
change the default settings of their software. Finally, some
geographic regions are covered less as Google has varying
popularity in different regions and we only measured vis-
its to Google servers. In first quarter 2009, Google servers
performed Web searches for 81% of global users according
to Hitlinks [10]. We consider the effects of the mentioned
measurement inaccuracies to be negligible, given the global
scale and size of our data set.

6. UPDATE CHAMPIONS AND LAGGARDS
We first analyzed the update effectiveness of the four lat-

est non beta releases for Google Chrome, Mozilla Firefox,
Apple Safari, and Opera, which were released before mid
April 2009, and plotted them against releases of the same
Web browser. The plots in Figure 3 show the update effec-
tiveness as percentage of daily active users of a new Web
browser version. We plot the shares for the first 21 days
after the release and state the Web browser version in the
graph legend together with the date of its release. We com-
pared a new release of a Web browser within Web browsers
of the same type and the same major version number.

After 21 days of releasing Google Chrome 1.0.154.48,
an exciting 97% share of active Google Chrome 1.x users
were using the latest Google Chrome 1.x version. This is
by far the best update effectiveness measured for any of the
four investigated Web browsers. It’s striking how similar the
shares increase for different releases of Google Chrome, in-
dicating the statistical robustness of the process measured.
The sudden decrease in the usage share of Google Chrome
1.0.154.46 at the end of the first week after release is ex-
plained by the availability of the successor Google Chrome
1.0.154.48.

Mozilla Firefox usage share increases are also strikingly
similar across different releases. The usage shares increase
slightly faster in the first few days compared to Google
Chrome but than flatten out way earlier, never reaching
more than 85% usage share for the latest version within
21 days of the release. Frequent checking for updates and
the rather obtrusive user prompt to install the new Mozilla
Firefox update by restarting the browser most likely help to
get users to update earlier. Another factor for such a shift is
the actual hour of the release on the publicized release date,
which can also shift results of daily measurements. The fast
initial uptake of a new Mozilla Firefox release is a very pos-
itive fact of Mozilla Firefox’ update mechanism.

A mere maximum 53% share of Apple Safari 3.x Web
browser users benefit from an update within three weeks
of its release. With newer releases of Apple Safari 3.2.x
versions, the update effectiveness drops considerably lower.
The reason is that Apple put the bar higher to who is eligi-
ble for updates to Apple Safari 3.2.x by requiring Mac OS
X Tiger 10.4.11 or higher or Mac OS X Leopard 10.5.5 or
higher with Security Update 2008-007 installed. Given that
Apple Safari 3.2.1 reaches only 33% on day 21 after release,
that’s an additional 20% of Apple Safari 3.x users that were
left behind since Apple Safari 3.2.x came out. It’s not the
first time that installation requirements prevent users from



0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Google Chrome

days since release

sh
ar

e

●

●

●

●

●

● ●

●

●

● CR 1.0.154.43, 2009−01−09
● CR 1.0.154.43, 2009−01−09

CR 1.0.154.46, 2009−01−28

● CR 1.0.154.43, 2009−01−09
CR 1.0.154.46, 2009−01−28
CR 1.0.154.48, 2009−02−03

●

●

●

●

●

●

●

●

●
● ● ● ●

●

●

CR 1.0.154.43, 2009−01−09
CR 1.0.154.46, 2009−01−28
CR 1.0.154.48, 2009−02−03
CR 1.0.154.53, 2009−03−23

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mozilla Firefox

days since release
sh

ar
e

●

●

●

●

●

●

● ● ● ●

● FF 3.0.5, 2008−12−16
● FF 3.0.5, 2008−12−16

FF 3.0.6, 2009−02−03

● FF 3.0.5, 2008−12−16
FF 3.0.6, 2009−02−03
FF 3.0.7, 2009−03−04

●

●

●

●

●

●

●
●

● ● ● ●

●

●

FF 3.0.5, 2008−12−16
FF 3.0.6, 2009−02−03
FF 3.0.7, 2009−03−04
FF 3.0.8, 2009−03−27

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Apple Safari

days since release

sh
ar

e

●

●

●

●

●

●

●

● SF 3.2.1, 2008−11−24● SF 3.2.1, 2008−11−24
SF 3.2.0, 2008−11−13

● SF 3.2.1, 2008−11−24
SF 3.2.0, 2008−11−13
SF 3.1.2, 2008−06−30

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

● ● ● ● ●

●

●

SF 3.2.1, 2008−11−24
SF 3.2.0, 2008−11−13
SF 3.1.2, 2008−06−30
SF 3.1.1, 2008−04−16

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Opera

days since release

sh
ar

e

●

●

●
●

● ●
●

● ●
●

● ●

● OP 9.61, 2008−10−21● OP 9.61, 2008−10−21
OP 9.62, 2008−10−30

● OP 9.61, 2008−10−21
OP 9.62, 2008−10−30
OP 9.63, 2008−12−16

●
●

●
●

● ●
● ●

●

●

●

OP 9.61, 2008−10−21
OP 9.62, 2008−10−30
OP 9.63, 2008−12−16
OP 9.64, 2009−03−03

Figure 3: Usage shares of new browser versions within the same browser major version for the first 21 days
after release.

updating browsers: users of OS X Panther 10.3, the most
recent OS X until OS X Tiger 10.4 was released on April
29, 2005, are limited to Apple Safari 1.3 and Mozilla Firefox
2. Similarly, Windows 9x users have to stick with Mozilla
Firefox 2 and Microsoft Internet Explorer 6 and Win 2000
users are limited to Microsoft Internet Explorer 6, the effect

of which is measured in [3].
Opera browser users apparently don’t update frequently.

After three weeks of a new release, a disappointing maxi-
mum of 24% active daily users of Opera 9.x have the newest
Opera browser installed. It’s a pity that 76% of Opera 9.x
users currently don’t benefit from the security improvements



and new features of new Opera versions within three weeks
of its release. If some engineering time were spent on increas-
ing update effectiveness instead of working on new features,
this would eventually benefit many more users. We also
recognize an outlier, namely Opera 9.61, which got replaced
after nine days of its release. The upcoming major version
of Opera, version 10 now in alpha testing, will update itself
automatically as new versions are released [8].

All in all, the poor update effectiveness of Apple Safari
and Opera gives attackers plenty of time to use known ex-
ploits to attack users of outdated browsers. Figure 4 shows
the version mix of Opera 9.x browsers in use relative to all
Opera 9.x browsers, 21 days after Opera 9.63 was released.
This version reached the highest measured update effective-
ness of the last four Opera releases with 24% usage share.
Similarly, we give in Figure 5 the shares of Apple Safari 3.x
minor versions relative to all Apple Safari 3.x versions in
use, 21 days after Apple Safari 3.2.1 got released.

Figure 4: Distribution of Opera 9.x minor versions
(relative to all Opera 9.x versions in use) 21 days
after release of Opera 9.63. ”Other 9.x” summarizes
versions with a less than 2% share each.

7. DISCUSSION OF UPDATE EFFECTIVE-
NESS

Comparing the best of each of the four most recent non
beta browser releases until mid April 2009 in terms of update
effectiveness as shown in Figure 6 gives the following results:

• Google Chrome with silent updates performed best
(97% for Google Chrome 1.0.154.48 on day 21).

• Mozilla Firefox with one click updates performed sec-
ond best (85% for Mozilla Firefox 3.0.8 on day 21) and
had the fastest initial update effectiveness in the first
five days after release.

• Apple Safari with OS based update checks performed
second worst (53% for Apple Safari 3.1.1 on day 21).
The more recent versions Apple Safari 3.2.0 and 3.2.1
(at most 33% on day 21) introduced a high dependency
on the underlying operating system by requiring a high

Apple Safari 3.x version shares in use 
21 days after release of 3.2.1

3.2.1
33%

3.1.1
21%

3.0.4
9%

3.2.0
5%

3.1.2
32%

other 3.x
1%

Figure 5: Distribution of Apple Safari 3.x minor ver-
sions (relative to all Apple Safari 3.x minor versions
in use) 21 days after release of Apple Safari 3.2.1.
”Other 3.x” summarizes versions with a less than
2% share each.

Mac OS X patch-level for the installation of the update
to succeed. This resulted in a considerably worse up-
date performance than Apple Safari 3.1.1 had.

• Opera with manual re-install performed worst (24%
for Opera 9.63 on day 21).

As previously discussed, we were not able to measure Mi-
crosoft Internet Explorer’s minor version update dynam-
ics for technical reasons. Given that Microsoft Internet
Explorer is updated through the operating system, much
like Apple Safari but with optional auto-download of any
browser update (and not just important ones as in OS X),
we would expect Microsoft Internet Explorer’s update per-
formance to be between that of Apple Safari and Mozilla
Firefox.

One intriguing question remains. Why is Google Chrome
not reaching 100% usage share with new releases even though
it silently performs updates without user interaction and
currently without letting the user disable updates? This
observation is attributed to a combination of the following
effects:

• Google Chrome updates only become effective after
installation once the user restarts the browser. Cur-
rently, there’s no reminder shown the to user that he
should restart and apparently, a significant popula-
tion share does not restart their browser withing three
weeks of a new release. Showing a non disruptive no-
tice for making the user restart rather sooner than later
could help.

• Some installations (e.g. Internet cafes, test labs, re-
mote desktops) use read-only software images in vir-
tual machines, where a software cannot update itself.
After a restart, the same old browser version will still
be installed.



0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Release Dynamics Summary

days since release

sh
ar

e

Mozilla Firefox
3.0.8

●

●

●

●

●
●

● ● ●

Google Chrome
1.0.154.48

Opera
9.63

Apple Safari
3.1.1

Apple Safari
3.2.1

Figure 6: Shares of active users visiting Google Web
servers with the indicated Web browser versions
measured relative to users of the same browser ma-
jor version over 21 days after each update was re-
leased.

• Insufficient user privileges can prevent the installation
of an update. For Google Chrome, no root or admin-
istrative privileges are required, so this case should be
rare.

• Some firewalls or network filtering devices might block
Google Chrome updates.

• Some users might remove googleupdate.exe or prevent
it from starting.

• Some tools and tweaked Web browsers might use an
outdated Google Chrome user agent string.

8. DISCUSSION OF PATCHING STRATE-
GIES

Patch management in general (not only of Web browsers)
is a complex undertaking – especially in the context of large,
business critical infrastructures typically found in organiza-
tions. Thus, in the last decade the increasing number of
patches has led corporate customers request software ven-
dors for a more predictable schedule to plan the patching
of their complex IT environments. As a result, several big
software vendors like Oracle or Microsoft today typically
release all their security patches on a predictable schedule
(e.g. every month or quarter). There are no out-of-band
patches except for rare, highly critical emergency ones. We
consider it suboptimal if patches for heavily attack exposed
and highly prevalent applications such as Web browsers and
plug-ins with more than a billion users worldwide, are de-
layed due to the need for a fixed patch schedule for some
business users. A fixed patch schedule mainly benefits the

patch management processes of larger corporations - organi-
zations which are typically better protected against Internet
threats than the masses of individual users. Based on our
measurements and the evolution of the threats towards end-
users we suggest that software vendors release patches for
attack exposed applications, such as Web browsers and plug-
ins, as soon as they are available - while keeping a patch
schedule for less attack exposed applications. We believe
that there is room for a better trade-off to benefit overall
security.

9. CONCLUSIONS
Our global measurements have empirically proven that

Web browser Google Chrome’s silent auto update mecha-
nism is the most effective compared to those of Mozilla Fire-
fox, Apple Safari, and Opera. With 97% latest version share
among daily active users three weeks after a new release,
it clearly reached the best result. We think that Google
Chrome’s update effectiveness could be further improved by
gently notifying the user about the needed browser restart
for changes to take effect after the installation of a new re-
lease is done. Furthermore, our results show that Mozilla
Firefox’ update mechanism has the fastest initial update ef-
fectiveness in the first five days after release. Being able
to deploy security patches for Web browsers quickly to all
end users greatly increases end system security as known
vulnerabilities can’t be exploited anymore.

In the case of Apple Safari 3.2.1, we have noticed that
coupling browser and operating systems and consequently
requiring the user to have a recent operating system patch
level in order to be eligible to install a browser update should
be avoided. Apple left an additional 20% of Apple Safari 3.x
users behind with an outdated browser version compared to
the previous update to Apple Safari 3.1.2, which did not
have these requirements.

Given that today’s best performing update mechanism,
Google’s Updater code-name Omaha [7], was recently open
sourced and is free to use for anyone, we encourage others
to try it out for their own software. With silent updates,
the user does not have to care about updates and system
maintenance and the system stays most secure at any time.
We think this is a reasonable default for most Internet users.
Furthermore, silent updates are already well accepted for
Internet Web applications.

10. ACKNOWLEDGMENTS
We would like to thank Mark Larson, Carl Nygaard, Mike

Smith, and Linus Upson (listed in alphabetical order) for
their feedback on this paper.

11. REFERENCES
[1] S. Frei, T. Duebendorfer, G. Ollmann, and M. May.

Understanding the Web browser threat. Technical
Report 288, TIK, ETH Zurich, June 2008. presented
at DefCon 16, Aug 2008, Las Vegas, USA.
http://www.techzoom.net/insecurity-iceberg

[2] Finjan. How a cybergang operates a network of 1.9
million infected computers. MCRC Blog - 2009, April
2009. http:
//www.finjan.com/MCRCblog.aspx?EntryId=2237

[3] S. Frei, T. Duebendorfer, and B. Plattner. Firefox
(In)security update dynamics exposed. SIGCOMM



Comput. Commun. Rev., 39(1):16–22, 2009.
http://doi.acm.org/10.1145/1496091.1496094

[4] Google Chrome Web browser.
http://www.google.com/chrome.

[5] NIST. National Vulnerability Database (NVD).
http://nvd.nist.gov.

[6] Common Vulnerability Scoring System (CVSS)
Calculator. http:
//nvd.nist.gov/cvss.cfm?calculator&version=2.

[7] Omaha, the open source Google Updater.
http://code.google.com/p/omaha/.

[8] Opera auto update. http://my.opera.com/
desktopteam/blog/index.dml/tag/auto-update.

[9] Microsoft Security Bulletin MS08-078.
http://www.microsoft.com/technet/security/

bulletin/ms08-078.mspx, December 2008.

[10] NetApplications.com. Search Engine Worldwide
Market Share. http:
//marketshare.hitslink.com/report.aspx?qprid=4,
March 2009.


